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Effects of confinement on critical adsorption: Absence of critical depletion for fluids in slit pores

A. Maciołek* and R. Evans
H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom

N. B. Wilding
Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

~Received 1 June 1999!

The adsorption of a near-critical fluid confined in a slit pore is investigated by means of density functional
theory and by Monte Carlo simulation for a Lennard-Jones fluid. Our work was stimulated by recent experi-
ments for SF6 adsorbed in a mesoporous glass, which showed the striking phenomenon of critical depletion,
i.e., the adsorption excessG first increases but then decreases very rapidly to negative values as the bulk
critical temperatureTc is approached from above along near-critical isochores. By contrast, our density func-
tional and simulation results, for a range of strongly attractive wall-fluid potentials, showG monotonically
increasingand eventually saturating as the temperature is lowered towardTc along both the critical (r5rc)
and subcritical isochores (r,rc). Such behavior results from the increasingly slow decay of the density profile
away from the walls, into the middle of the slit, asT→Tc

1 . For r,rc we find that in the fluid the effective
bulk field, which is negative and which favors desorption, is insufficient to dominate the effects of the surface
fields which favor adsorption. We compare this situation with earlier results for the lattice gas model with a
constant~negative! bulk field where critical depletion was found. A qualitatively different behavior of the
density profiles and adsorption is found in simulations for intermediate and weakly attractive wall-fluid poten-
tials, but in no case do we observe the critical depletion found in experiments. We conclude that the latter
cannot be accounted for by a single pore model.@S1063-651X~99!03012-3#

PACS number~s!: 64.60.Fr, 05.70.Jk, 68.35.Rh, 68.15.1e
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I. INTRODUCTION

The term ‘‘critical depletion’’ was introduced in connec
tion with experiments designed to study the phenomeno
critical adsorption for a pure fluid at a solid substrate@1,2#.
When a fluid is brought to its bulk critical point in the pre
ence of an attracting external wall or substrate, for exam
along a critical isochore, the amount adsorbed~adsorption!
diverges ast[(T2Tc)/Tc→0. Tc is the critical tempera-
ture. Theory@3# attributes these divergences to the fact t
the wall causes a perturbation of the order parameter~OP!
profile m(z)[r(z)2rc , wherer(z) is the density profile, to
extend over a distance;j, the bulk correlation length, from
the surface. Close to criticality, wherej;utu2n (n is the
critical exponent!, the OP profile differs from its bulk value
~fixed by the properties of the reservoir far from the su
strate! over macroscopic distances, and the adsorption ca
a diverging quantity. Fisher and de Gennes@3# postulated
that near criticality the OP profile should be described
terms of a universal scaling function, i.e., sufficiently clo
to Tc and for sufficiently strongly attracting walls,

m~z!5tbNS z

j D , ~1.1!

where N is a universal scaling function. Fisher and

*Permanent address: Institute of Physical Chemistry, Po
Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw,
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Gennes argued that ast→0 along the critical isochore (r
5rc), the adsorptionG takes on the asymptotic, univers
form

G[E
0

`

m~z!dz;tbj;tb2n, ~1.2!

where z is the distance measured normal to the substr
located atz50. b is the critical exponent describing th
vanishing of the bulk OP andb2n'20.305 for Ising mag-
nets or fluids. In Ref.@1# measurements were performed f
SF6 adsorbed on a finely divided~colloidal! graphite adsor-
bent~Vulcan 3G). The volumetric method employed in thes
experiments measuredG directly on approaching the critica
point along the critical or near-critical isochores. AlthoughG
increased ast was reduced, consistent with Eq.~1.2!, close
to Tc (t;531023) the adsorption reached a maximum a
decreased sharply, taking on negative values very clos
Tc . Microgravity experiments by the same group confirm
these results@1,2#. The critical depletion ofG was attributed
to the confining effects of colloidal particles on the nea
critical fluid, and new experiments, designed to test this c
jecture, were performed on the sorption of SF6 in a mesopo-
rous glass CPG-350, which comprises a rigid interconnec
system of mesopores with a nominal pore diameter of 31
For the rigid porous material the measured adsorpt
showed a temperature dependence very similar to that fo
for the colloidal graphite adsorbent.

These experimental results have stimulated several si
lation @4,5# and theoretical studies@6,7# aimed at understand
ing the origin of the striking behavior ofG and, in particular,
to answer the fundamental question as to whether crit
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7106 PRE 60A. MACIOŁEK, R. EVANS, AND N. B. WILDING
depletion is a single pore phenomenon like, for examp
capillary condensation@8#, which arises from the combine
effects of wall-fluid forces and finite size, and which man
fests itself in simple confining geometries. The grand cano
cal Monte Carlo simulations@4,5# of a Lennard-Jones fluid
confined between two structureless, attractive planar w
indicated that the average, local density in the middle of t
slit pore could fall belowrc under near-critical conditions
thereby leading to depletion. However, it was shown rece
that the depletion found in Refs.@4,5# is an artifact of the
simulation procedure@27#. Theoretical studies@6# of the sim-
plest model of a confined fluid, namely, a lattice gas sub
to identical surface fields located at two walls, revealed
physical mechanism which could cause a dramatic decr
of the adsorptionG on approachingTc along near-critical
isochores. Consider the situation when the density of
bulk reservoir is slightly lower than critical. Transcription o
the lattice gas into the Ising model sets the chemical po
tial difference

Dm[m~r,T!2m~rc ,T!52H, ~1.3!

wherem(rc ,T) is the chemical potential on the critical iso
chore, andH is the bulk magnetic field. Thus forr,rc ,
Dm52H,0, and the bulk field favors the dilute~gas!
phase. If the surface fields are sufficiently attractive that t
favor adsorption of the dense~liquid! phase, then one has
competition between bulk and surface fields which infl
ences the shape of the OP profile and hence the behavi
the adsorption in the slit pore. When the pore is large a
when the bulk correlation length is much smaller than
width of the poreL, then the fluid in the middle part of th
pore should behave as a bulk fluid. For weakH, the bulk OP
~magnetization! in the critical region behaves as

mb5Hx;Ht2g, ~1.4!

where x is the susceptibility. Near the walls, on the oth
hand, the fluid should behave as in a semi-infinite ne
critical system subject to a surface field. ‘‘Bulk’’ and ‘‘sur
face’’ fields give diverging contributions, but of opposi
sign, to the adsorptionG for t→0. For large pore widths and
for t@t0, wheret0 is defined byj(t0)'L, the adsorption
can be approximated, forH,0, by

G;A 1tb2n2A 2uHut2gL, ~1.5!

where A1 and A2 are positive amplitudes. Sinceg.(n
2b), the second term always dominates forT sufficiently
close to Tc provided uHu is sufficiently strong, and, as
consequence, depletion ofG will occur. For even smallert,
such thatt!t0, the adsorption saturates at a value wh
depends onH and on the surface field. The lattice gas mod
of a single pore predicts critical depletion forr,rc only.
For the case of the critical isochorer5rc , the bulk field
H50, and ast is reducedG first increases monotonically
following the Fisher–de Gennes power law, and eventu
saturates, taking on a positive value att50 (T5Tc) @6#.

This scenario was confirmed by explicit mean-field latt
gas calculations@6# and for two dimensional Ising films, with
bulk and surface fields of opposite sign, by density ma
renormalization group calculations@7#. In the latter case it
,
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was shown that the near-critical fluctuations can lead to
even richer variation ofG(t). For certain values ofH, in
addition to the maximum, a minimum ofG appears where
the correlation length approaches the pore width, and
competition between the effect of adsorbing walls and
large susceptibility of the central region~favoring the dilute
phase! becomes particularly strong. For weakH,0 the re-
sults forG(t) obtained in the lattice gas~Ising! model of a
single pore look very similar to those measured in the
periments of Refs.@1# and @2#. In the experiments for SF6
adsorbed in the controlled pore glass, the actual isoch
correspond to densities lower than critical, i.e.,r/rc50.995
and 0.999, so thatDm,0.

It is then tempting to argue that sinceDm,0, there is an
effective bulk fieldH,0 which competes with the surfac
fields to give rise to critical depletion. Although this is
plausible explanation of the observed phenomenon, it d
not take into account the actual situation in a fluid. For e
ample, if the bulk densityr is fixed according to the experi
mental condition of the fluid reservoir,Dm, as defined by
Eq. ~1.3!, will vary as T approachesTc . The corresponding
bulk magnetic field will vary in the same way. In the prese
paper we show that taking into account the temperature
pendence ofDm has a profound effect on the behavior
confined fluids nearTc . In particular we find that under the
experimental conditions of Refs.@1,2# a simple fluid con-
fined in a single slit pore should not exhibit critical depletio
Rather the adsorption should increase monotonically at
→0. This implies that an explanation of the experimen
observations is still lacking.

Our paper is organized as follows. In Sec. II we reco
sider the physical mechanism which leads to critical dep
tion of adsorption in the case of the lattice gas model o
pore considered in Ref.@6#, and give a heuristic argument a
to why this phenomenon should not be expected for r
fluids when the reservoir density is fixed according to expe
mental conditions. Our argument is supported by explicit c
culations ofG using the density functional approach, and
grand canonical Monte Carlo simulations of the Lenna
Jones fluid in a slit pore. In Sec. III we report density fun
tional results obtained from a square gradient approxima
to the free energy functional and short-ranged~contact! wall-
fluid potentials. Both classical and nonclassical bulk free
ergy densities are employed, and in the classical case
investigate two forms of the free energy density, namely,
Landau model free energy and the free energy of
Lennard-Jones fluid as obtained in Ref.@9# from an accurate
fit to simulation data. Section IV describes the compu
simulations of the density profiles and adsorption of t
Lennard-Jones fluid on the critical isochore and for a s
critical isochorer,rc . Results are presented for variou
strengths of the 4–10 and 3–9 wall-fluid potentials. We co
clude in Sec. V with a discussion of the relevance of o
findings for the experiments described earlier.

II. HEURISTIC ARGUMENT

Here we reconsider the scaling argument@6# that predicts
critical depletion in the lattice gas model of a single po
and modify it to incorporate two features that are relevant
the case of fluids. First, in order to mimic the experimen
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PRE 60 7107EFFECTS OF CONFINEMENT ON CRITICAL . . .
situation more closely, one should account for the fact t
Dm[m(r,T)2m(rc ,T) will vary as the temperatureT ap-
proachesTc at constantr. This implies that the correspond
ing bulk magnetic fieldH should also vary withT, and there-
fore that the second term of the approximate formula~1.5!
for the adsorptionG might have a differentt dependence
This in turn may affect the result of the competition betwe
the bulk and surface fields.

Second the lattice gas model considered in Ref.@6# has an
exact particle-hole symmetry, which corresponds to
trivial symmetry under reversal of the fieldH in the equiva-
lent Ising model. For real fluids such symmetry is only a
proximate. It is well established that the reduced symme
of fluids leads to scaling field mixing close to the critic
point @10#. To linear order int and inm(r,T)2mc , where
mc[m(rc ,Tc), the scaling fields have the forms

uH[m~r,T!2mc2c1t, ~2.1!

ut[t1c2„m~r,T!2mc…, ~2.2!

where the parametersc1 andc2 are system-dependent~non-
universal! quantities controlling the degree of field mixing
c1 is identified as the limiting critical slope of the coexis
ence curve, i.e.,c1 /Tc5 limT→Tc

dmcoex(T)/dT. In order to
account for the asymmetry of a real fluid near its critic
point one should identify the bulk field 2H with uH rather
than withDm in the scaling analysis.

The temperature dependence of the bulk fieldH depends
on the particular equation of state. Consider first the simp
possibility, i.e., the classical equation of state in the criti
region given by retaining only the leading terms of the e
panded van der Waals~vdW! equation of state. In terms o
reduced temperaturet and densityr[(r2rc)/rc the vdW
equation of state reads

Dm* 526r 2
8

3
~11t!ln

12r /2

11r
14~11t!F 1

12r /2
21G ,

~2.3!

whereDm* 5Dm/Pcvc , Pc is the critical pressure, andvc is
the critical volume per molecule. The leading order behav
of this equation in the near-critical region is

Dm* 56r t1 3
2 r 3, ~2.4!

where we have ignored termsO(r 4) andO(tr 3) and higher.
Note that Eq.~2.4! exhibits particle-hole symmetry in tha
Dm* along an isotherm is antisymmetric with respect to
critical isochore

Dm* ~2r ,t!52Dm* ~r ,t!. ~2.5!

Moreover, for this case there is no scaling field mixing a
uH5Dm* whose magnitudedecreaseslinearly in t asTc is
approached at constantr.

In order to analyze the influence of at-dependent bulk
field on the behavior of the adsorptionG(t), we reconsider
the approximate formula~1.5!. For the expanded vdW equa
tion of state~2.4! and r ,0 (r,rc), Eq. ~1.5! becomes

G;A 1tb2n2A 3ur u3t2gL2A4ur uL, ~2.6!
t

n
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whereA35(3/4)A2 andA453A2, and for consistency with
the vdW approach the critical exponents should take on t
classical valuesb5n51/2 andg51 and the first~critical
adsorption! term diverges as2 ln t. Apart from the addi-
tional temperature independent term, Eq.~2.6! has the same
form as for a constant bulk field@Eq. ~1.5!#. The additional
term does not affect the shape of the curveG(t). It simply
shifts G(t) as a whole toward negative values and for lar
widths of the poreL and ~or! relatively largeur u it could
drive G negative sufficiently far from the critical point~large
t). Closer toTc the temperature dependent terms domin
and the analysis ofG(t) as a function ofH andL performed
in Ref. @6# for constant bulk fieldH, goes through withuHu
replaced byur u3. Following Ref.@6# we rewrite Eq.~2.6! in
the form

G~t!5tb2nFA12S t

t r
D n2DG2A4ur uL, ~2.7!

where

t r5~A 3ur u3L !1/(D2n), ~2.8!

and we have used the exponent relation@11# g5D2b to
introduce the gap exponentD. Once again it is understoo
that the exponents take their classical values. In the regio
validity of approximation ~1.5!, i.e., for 1@t@t0, with
j(t0);L three different ranges oft r with qualitatively dif-
ferent behaviors ofG(t) can be distinguished@6#.

~1! t r!t0. In this case the first term in square brackets
Eq. ~2.7! dominates in the whole region of validity of thi
approximation sincet/t r@1 andn2D is negative. Hence in
this region the adsorption should increase monotonically
t→0.

~2! t r@1. This condition is equivalent tour u3L@1. In
this caset/t r!1 throughout the critical region, and the se
ond term in square brackets in Eq.~2.7! dominates. Hence
the adsorption is negative anddesorptiontakes place despite
the presence of adsorbing walls.

~3! t0!t r!1. For a given pore widthL , the second term
in square brackets in Eq.~2.7! dominates so long ast,t r
and thenG(t) is negative. Ast increases,G(t) reaches a
maximum fort't r . Finally for t@t r the constant term in
square brackets in Eq.~2.7! dominates over the second term
and for such temperatures the usual Fisher–de Gennes
of adsorption should occur.

We now consider values of parameters appropriate to
experiments of Refs.@1,2#. Assume thatL/s;102 is of the
size of the nominal pore diameter (s is the molecular size!
of the mesoporous glass used as the adsorbent. Forr 5
20.001 and20.005, corresponding to the two near-critic
isochores along whichG(t) was measured,t r;1027 and
1025. For this value ofL, t0;1024 and t r!t0. Then ac-
cording to the above discussion the adsorptionG shouldin-
crease monotonicallyas T is lowered towardTc following
these two isochores. Even for densities that deviate m
strongly from rc , e.g., r 520.01 andt r;1024;t0, the
condition of the case~3! for the occurence of depletion ofG
might still not be satisfied. It is also very likely that for thes
values ofr and L the adsorption is positive fort't0, and
hence fort,t0 it should saturate at a positive value.
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7108 PRE 60A. MACIOŁEK, R. EVANS, AND N. B. WILDING
It is important to contrast this constantr ~density! sce-
nario with the constantH lattice gas described in Ref.@6#.
There depletion was observed for fieldsH in the range
21027 to 21.531024. These were sufficiently strong t
drive G negative fort.t0, i.e., whilej was smaller thanL.
G then saturated at a negative value fort<t0. In the present
case, even for values ofr as negative as20.01, the effective
field might not be strong enough to driveG negative before
j;L, and thenG would saturate at a positive value.

Our analysis so far has been based on Eq.~2.4!. Now we
consider equations of state which do not incorporate sym
try ~2.5! in the m-T plane. For systems described by su
equations of state, the ‘‘true’’ scaling fields are nowuH and
ut and by analogy with bulk@10# the ‘‘true’’ OP m(z) which
satisfies the scaling relations~1.1! and~1.2! is notr2rc but
rather the linear combination of the number and entropy d
sities (r2rc)2c2(s2sc). The entropy term in the OP doe
not change the leading asymptotic behavior of the adsorp
for the semi-infinite system; it gives rise to a ‘‘correctio
term’’ to Eq. ~1.2! of ordert12a2n, wherea is the specific
heat critical exponent. In the scaling analysis ofG for the
confined system, the scaling fieldH should now be replaced
by uH . In order to see if this can change the behavior ofG,
we first consider equations of state that are linear int, as
was the case in the vdW equation of state. For all such eq
tions the ‘‘mixed’’ scaling fielduH reduces to 2H defined by
Eq. ~1.3!. This is due to the fact that the chemical potent
on the critical isochore and the chemical potential at coex
ence have the same limiting slope atTc , i.e., c1 /Tc
5 limT→T

c
2(dmcoex/dT)5 lim

T→Tc
1(]m(r,T)/]T)rc

so that

uH5m~r,T!2mc2c1t

5Dm1m~rc ,T!2mc2c1t5Dm52H. ~2.9!

Thus, for classical equations of state which are linear in te
perature, the reduced symmetry of the fluid does not in
ence the temperature behavior of the bulk field. 2H5Dm
differs from the leading order behavior only by terms high
in r. For example, in the case of the vdW equation of st
these are of orderr 4 andtr 3.

If the equation of state is not linear in temperature, th

uH5Dm1m~rc ,T!2mc2c1t5Dm1a2t21O~t3!,
~2.10!

wherea2 is a constant coefficient. Thus the temperature
pendence of the scaled fielduH , which now plays the role of
the bulk fieldH, differs from that ofDm, but only by terms
of higher order int.

We conclude that differences arising from the reduc
symmetry of the fluid, i.e., ‘‘mixed’’ scaling fields, are no
important for the behavior of the adsorption. The presenc
higher order terms inr andt do not change the conclusion
of our analysis performed using Eq.~2.4!. Thus our predic-
tions of no depletion of adsorption along near-critical isoc
ores should be valid for all classical equations of state.

Of course real fluids are nonclassical. Our argument
be extended using the fact that near criticality real flu
should obey the scaled equation of state@12#

Dm5r ur ud21D0h~t/ur u1/b!, ~2.11!
e-

n-

n

a-

l
t-

-
-

r
e

-

d

of

-

n
s

whered is the critical exponent andD0 is an amplitude for
the power law on the critical isotherm, andh(x) is a scaling
function. Note thatDm5m(r,T)2mcoex(T) for t,0 and
d511g/b. Althougha priori there is no theoretical expres
sion for h(x), the scaling function should satisfy sever
conditions following from requirements of thermodynam
stability and analyticity of the chemical potential. Thush(x)
should be analytic in its range of definition21,x,`,
equal to 0 atx521, the coexistence curve, and possess
~asymptotic! series expansion nearx5` ~the critical isoch-
ore! of the form

h~x!5 (
n51

`

hnxb(d1122n). ~2.12!

For small values ofx, h(x) should have an expansion of th
form

h~x!511 (
n51

`

hnxn. ~2.13!

The leading temperature dependence ofDm on the near-
critical isochores is given by the first term in expansi
~2.12!, and the leadingr dependence is given by the firs
term in expansion~2.13!, i.e.,

Dm;h1r tg1D0r ur ud21, ~2.14!

whereD0 andh1 are amplitudes. For classical exponents t
expression is consistent with Eq.~2.4!. Using this form for
the bulk field 2H;Dm, we can repeat the analysis pe
formed above. Equation~2.7! remains valid, but nowt r
;(ur udL)1/(D2n). For real fluidsd;4.78, which means tha
the values oft r are even smaller for a givenr than in the
classical case. This implies that the effective bulk field
very weak for the conditions of the experiment, and th
depletion of the adsorptionG should not occur. Rather, satu
ration of G at positive values should be expected.

III. RESULTS FROM DENSITY FUNCTIONAL THEORY

In this section we report the results of density function
calculations for the adsorptionG of a near-critical simple
fluid confined in a slitlike pore. These results provide
explicit test of the heuristic ideas given above.

Specifically, we consider a fluid confined between tw
identical parallel adsorbing walls located atz50 andz5L,
and infinite in thex andy directions. The system is in contac
with a bulk reservoir at fixed temperatureT and chemical
potentialm. The equilibrium profile is obtained by minimiz
ing the grand potential functional@13#

V@r#5F@r#2E dr „m2V~r !…r~r !, ~3.1!

whereV(r ) is the total wall-fluid external potential,

V~r ![V~z!5U~z!1U~L2z!, ~3.2!
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andU(z) is the solid-fluid potential due to a single wall. Th
equilibrium density profiler(r )[r(z) corresponds to the
minimum of V@r#. We choose the simplest form forV
based on the square gradient approximation to the intri
free energy functionalF@r#, and model the wall-fluid con-
tribution by a termFs which depends only on the fluid den
sity at contact, i.e., onr(0)5r(L). In this approximation
the grand-potential excess per unit area is the following fu
tional @14#:

g@r#5
1

2 S E
0

L

dzFc~r!1
D

2 S dr

dzD
2G1FsD . ~3.3!

Herec(r)[v(r)1P is the excess grand-potential, densi
i.e., v(r)[ f (r)2mr is the grand potential density,P is the
pressure, andf (r) is the Helmholtz free energy density of
homogenous fluid of densityr. For T,Tc c(r) has two
minima corresponding to the two distinct bulk phases.
bulk coexistence both minima are equal to zero. The coe
cient D is related to the second moment of the direct cor
lation function @13#, but for simplicity we choose it to be
density independent. The wall-fluid term has the form

Fs5
c

2
„r2~0!1r2~L !…2«w„r~0!1r~L !…. ~3.4!

The first term, withc.0, represents a reduction of attractiv
pair interactions between fluid particles at the surface aris
from exclusion of the fluid by a wall. The second term wi
«w.0 measures the strength of the attractive wall poten
Symmetry of the wall-fluid potential dictates thatr(0)
5r(L) anddr/dz50 at z5L/2.

It is well known that functionals of this type cannot in
corporate short-ranged correlations, and hence cannot ac
for oscillations of the density profile which occur near t
walls @8#. However, they should capture the main features
critical adsorption in large pores, as this phenomenon
dominated by the behavior of the profile far from the wal
Indeed they were succesfully employed by Marconi@15# in a
pioneering study of the effects of finite size on critical a
sorption.

Minimization of Eq.~3.3! yields an equation for the den
sity profile r(z),

D
d2r~z!

dz2
5

dc

dr~z!
, ~3.5!

with boundary condition at the wallz50,

DFdr~z!

dz G
z50

5cr~0!2«w . ~3.6!

Equation~3.5! has a first integral

D

2 Fdr~z!

dz G2

5c~r!1F, ~3.7!

whereF is a constant of integration, independent ofz, whose
value depends onT, L, and m. The functionF(L), which
vanishes asL→`, can be identified with the solvation forc
ic

-

,

t
-
-

g

l.

unt

f
is
.

-

between the walls@15,16#, i.e., F(L)522(]g/]L)T,m ,
whereg is the equilibrium value ofg@r#. It may be deter-
mined from the equations

L5~2D !1/2sgn„r~0!2r~L/2!…E
r(L/2)

r(0) dr

@c~r!2c„r~L/2!…#1/2

~3.8!

and

F52c~r~L/2!, ~3.9!

both of which follow from Eq.~3.7! along with

c„r~0!…2c„r~L/2!…5
1

2D
„cr~0!2«w…

2, ~3.10!

which follows from the boundary condition~3.6!. The key
quantity of this study, the Gibbs adsorptionGG ~coverage!, is
defined as

GG5E
0

L

„r~z!2rb…dz, ~3.11!

with rb the density of the bulk fluid at chemical potentialm
and temperatureT. GG satisfies the Gibbs adsorption equ
tion

GG522~]g~L !/]m!T , ~3.12!

which gives, using Eq.~3.3!, the following expression for
GG :

GG5~2D !1/2sgn„r~0!

2r~L/2!…E
r(L/2)

r(0) dr„r~z!2rb…

@c~r!2c„r~L/2!…#1/2
. ~3.13!

In order to test our predictions from Sec. II we chose th
different models forc(r) and calculated the adsorption as
function of temperature on approachingTc from above along
near-critical isochores, i.e., for fixedr<rc .

(a) Landau model free energy.In this case we expand th
grand potential densityv(r) and the pressureP52v(rb)
about the critical densityrc . In terms of reduced variable
r 5(r2rc)/rc and r b5(rb2rc)/rc the dimensionless ex
cess grand potential is

c* ~r !5
a*

2
~r 22r b

2!1
b*

4
~r 42r b

4!2~r 2r b!Dm* ,

~3.14!

wherec* [c(r)/kBTcrc and (kBTc /rc)a* [a5(]m/]r)T

at r5rc , (kBTc /rc
3)b* [b5 1

6 (]3m/]r3)T at r5rc , and
Dm* 5„m2m(rc ,T)…/kBTc @18#.

Such a choice forc(r) corresponds to the simplest mea
field or Landau description of a model fluid exhibitin
particle-hole symmetry. For the special caseDm50 ~on the
critical isochorerb5rc) the integrals~3.8! and~3.13! can be
performed explicitly in terms of the incomplete Jacobi elli
tic integral of the first kind@24#. For Dm,0, i.e., for rb
,rc , relation~3.8! between the order parameter at the m
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point r m and the wall separationL can also be expressed
terms of the elliptic integral of the first kind~see the Appen-
dix!.

For a given value of the separationL between the walls
and for fixed bulk densityrb , we determined the reduce
densitiesr m and r w and F(L) at various temperatures, co
responding tot between 0.1 and 0, using a graphical co
struction @16# along with Eq.~3.8!. For a givenL there is
only one solution in this range of temperatures. At each te
perature we calculate numerically the integral~3.13! for GG
using the Romberg method. As a check of the accuracy
calculatedGG for r b50 using analytical expressions for in
tegrals ~3.8! and ~3.13! in terms of the incomplete Jacob
elliptic integral of the first kind.

We performed our calculations using parametersa* and
b* obtained by fitting the critical temperature and the critic
density of SF6, i.e., rc53.05 nm23 andTc5318.7 K, using
a generalized vdW equation of state~see Ref.@15# for de-
tails!. We find a* 52.764t andb* 50.113. The value ofD
was taken from Ref.@15#, giving D* 51.094. The wall fields
c and«w were treated as independent parameters which w
varied in order to examine the influence of the strength of
wall potential on the behavior ofGG(t).

We studied systems with different wall separationsL
ranging between 25 and 200 nm. For eachL and fixed wall
fields c and«w , we calculatedGG(t) along the critical iso-
chore and for several near-critical isochores, i.e., for fixedr b
between 0 and20.1.

The results forL5100 nm, c* [c/D50.5 nm21, and
«w* [«w /(rcD)51 nm21, and several values ofr b , are
shown in Fig. 1~a!. A similar behavior of the adsorption i
found for the other values ofL we considered. Note that th
effective hard-sphere diameter resulting from fitting the S6
data is 0.433 nm@15#. In order to allow for a more direc
comparison with the analysis of Sec. II, and with the resu
from the lattice gas~Ising! model of Ref.@6#, in Fig. 1 we
plot the quantity

Gc[E
0

L

dz~r~z!2rc!5GG1rcr bL ~3.15!

rather than Gibbs adsorptionGG . Our choice for the coeffi-
cientsc* and«w corresponds to walls that attract fluid rath
strongly. On the critical isochore, i.e., forr b50, the reduced
contact densityr w'0.57 atT5Tc , and does not change ver
much as the temperature is increased. Our results show
depletion; for all choices of the bulk density, the curv
Gc(t) increase monotonically with decreasingt. The ad-
sorption first increases asT approachesTc from above, and
then saturates sufficiently close toTc . Except for r b5
20.1, the value at saturation is positive. Moreover for t
isochores which are the nearest to the critical one, i.e.,
0<r b<20.01, the values ofGc(t) are very close fort
,1024 and the adsorption saturates att'1025 correspond-
ing to j;L, which agrees with the result found from th
Ising model@6#. We have examined the behavior ofGc(t)
for several choices of the coefficientsc* and «w* , but no
qualitative differences in behavior have been found. Wh
the strength of the wall-fluid interaction«w* decreases, the
degree of adsorption becomes smaller.
-

-

e
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FIG. 1. AdsorptionGc(t) ~in units of nm22) defined by Eq.
~3.15! as a function of the deviation from the bulk critical temper
ture, calculated in three different models.~a! Landau model for wall
separationL5100 nm, surface field«w* 51 nm21 and surface cou-
pling c* 50.5 nm21. The curves correspond to different values
the reduced bulk reservoir densityr b5(r2rc)/rc . From the top to
the bottom, r b50,20.005,20.01,20.03,20.05, and 20.1. ~b!
Model with the free energy density of the LJ fluid for wall separ
tion L550s, wheres is the LJ atomic diameter, surface field«w*
50.75 nm21, and surface couplingc* 50.5 nm21. The curves cor-
respond to the following values ofr b : r b50,20.005,20.01,
20.1, and20.15. ~c! Fisk-Widom model for the sameL, «w* , c* ,
and r b as in the Landau model.
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(b) Lennard-Jones fluid free energy.As a second mode
we chosef (r) to be the Helmholtz free energy density of th
Lennard-Jones~LJ! fluid as given by the empirical, modifie
Benedict-Webb-Rubin~MBWR! equation of state@9#

f * ~r* ![r* A* ~r* !5r* S (
i 51

8
air* i

i
1(

i 51

6

biGi D 1r* Aid* ,

~3.16!

where f * (r* )[ f (r)s3/e and r* 5rs3. e is the LJ well
depth ands is the LJ atomic diameter.Aid* is the ideal gas
term, ai and bi are nonlinear functions of temperature, a
Gi are functions of the densityr* ~see Ref. @9#!. The
MBWR equation is a classical equation of state obtained
fitting to simulation data. It describes the near-critical reg
of a LJ fluid quite accurately. Since it is nonlinear in tem
perature, it does not possess the particle-hole symmetr
Eq. ~2.5!.

In order to calculate the adsorption in this model we p
ceed along the lines described above for the the Lan
model, but now we perform all the integrals numerically. W
fit the parameters to the critical temperature and critical d
sity of SF6 and the parameterD is obtained from the rela
tions a5(]m/]r)Tc at r5rc and

a/D5j0
22t2n, ~3.17!

with n51 the classical value.j0, the correlation-length am
plitude, is set equal to the experimental value 0.2 nm
SF6. We findD/(s3e)50.364 nm2 ands50.467 nm.

Figure 1~b! shows the results forGc for the wall separa-
tion L550s and r b between 0 and20.15. The wall fields
are chosen to be equal toc* [c/D50.5 nm21 and «w*
[«w /(rcD)50.75 nm21, which yields a contact densit
r w'0.51 at the critical point. The shapes of the curves
very similar to those for the Landau model. The absol
values ofGc are smaller asL is much smaller than the valu
used for the Landau model. Note that for this wall separat
the density of the bulk reservoir must be further remov
from rc in order to shift the whole adsorption curve belo
zero; for r b520.15, Gc still saturates at a positive value.

(c) Fisk-Widom free energy.In order to incorporate non
classical critical exponents, we employ the simplest poss
approach that goes beyond mean field, i.e., the Fisk-Wid
functional@17#. This has the form of Eq.~3.3! with the grand
potential density~3.14! replaced by

c* ~r !5
a*

2
~r 22r b

2!1
b*

d11
~r d112r b

d11!2~r 2r b!Dm* ,

~3.18!

where c* [c(r)/Pc and (Pc /rc
2)a* [a5(]m/]r)T at r

5rc , and (Pc /rc
d11)b* [b and Dm* 5„m

2m(rc ,T)…rc /Pc . The parametera now vanishes as the
‘‘exact’’ inverse compressibility:a;tg and the dimension-
less quantities are defined in a slightly different way fro
those in the Landau model—see below Eq.~3.14!. Following
Ref. @15# we invoke rational approximants for the critic
exponents, i.e.,g54/3, n52/3, b51/3, andd55. In this
approximation the specific heat exponenta and the correla-
tion function exponenth are equal to zero, and the coeffi
y
n

of

-
au

-

r

e
e

n
d

le
m

cient D can then be treated as a constant, whereas in re
D diverges ast2hn. We defineD* [Drc

2/Pc , which has
dimension length squared.

As for the Landau model, the integrals in the formulas
L and GG can be expressed in terms of elliptic integrals
the first kind for the special case of the critical isocho
Dm50 ~see the Appendix!. We use these formulas to calcu
late Gc along the critical isochore. ForDmÞ0 we evaluate
the integral forG numerically. The parametersD* , a* , and
b* were obtained, following Ref.@15#, from the Missoni-
Levelt Sengers-Green nonclassical equation of state
from relation~3.17!. These were fitted, as in previous mo
els, to the experimental values ofTc , rc andj0 for SF6. The
critical pressurePc53.7605 MPa.

Figure 1~c! shows our results forGc calculated for the
same wall separationL5100 nm, the same values of the wa
fields c* 50.5 nm21, and «w* 51 nm21, and the same
choices of the reduced bulk densitiesr b as the results ob-
tained from the Landau model and shown in Fig. 1~a!. Again,
there is no depletion, and the overall form of the results
the adsorption is similar to that for the Landau model and
the model with the LJ fluid free energy density. The adso
tion is stronger sinceb2n521/3 for this model rather than
0 ~logarithmic increase! for mean field. After saturation ha
set in, i.e., fort<231026, Gc is almost independent ofr b .
From the plot of the midpoint densityr m as a function of
temperature~Fig. 2!, we see that the temperature depende
of the adsorption along the isochores mimics the tempera
dependence ofr m . r m takes on a value equal tor b for large
t and then increases ast→0. This behavior is completely
different from the case of the of the lattice-gas~Ising! model
with constant negative bulk field in which the magnetizati
becomes more negative asTc is approached from above.

IV. SIMULATION STUDIES OF A LENNARD-JONES
FLUID

A. Computational details

We have performed Monte Carlo simulations of a simp
one component fluid, interacting via an interparticle poten
of the LJ form:

FIG. 2. The reduced midpoint densityr m5„r(L/2)2rc…/rc as a
function of the deviation from the bulk critical temperature calc
lated in the Fisk-Widom model for the same parameters as in
1~c!.
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ULJ~r !54eF S s

r D 12

2S s

r D 6G . ~4.1!

Here, as in Sec. III,e measures the well depth of the pote
tial, while s sets the length scale. As is customary in sim
lations of systems whose interparticle potential decays
idly with particle separation, the LJ potential was trunca
in order to reduce the computational effort. In accordan
with many previous studies of the LJ system, the cutoff
dius was chosen to ber c52.5s, and the potential was lef
unshifted. No corrections were applied to account for
effects of the truncation.

The simulations were performed within the grand cano
cal ensemble@19,20#, permitting fluctuations in the total par
ticle numberN. Two distinct geometries were studied:

~a! A fully periodic cubic system of volumeV5Ld.
~b! A slit-pore geometry in which the fluid is confined t

a cuboidal simulation cell of dimensionsLx3Ly3L ~with
Lx5Ly) having structureless hard walls in the planesz50
and z5L, and periodic boundary conditions at the c
boundaries in thex andy directions parallel to the walls.

Consider the behavior of the configuration averaged lo
number densityr(r ) in these systems. In geometry~a!, trans-
lational invariance ensures thatr(r ) is independent of the
position vectorr (x,y,z), and one has simplyr(r )5r, i.e.,
the configuration averaged number density. In the absenc
finite-size effects,r is completely determined by the im
posed values of the chemical potentialm and the temperature
T. By contrast, in geometry~b! the presence of the walls a
z50 and z5L break the translational symmetry in thez
direction, giving rise to a one-dimensional densityprofile
r(r )5r(z) representing the configuration averaged lo
number density at a givenz. The precise form of this profile
depends not only onm andT, but also on the details of th
fluid-wall interaction. In this work, we assume that fluid pa
ticles interact with a single wall via a long ranged potent
having one of either two forms:

U4 –10~z!54e f 4210F2

5 S s

z D 10

2S s

z D 4G , ~4.2a!

U3 –9~z!54e f 329F 2

15S s

z D 9

2S s

z D 3G , ~4.2b!

wheref is a parameter that tunes the strength of the fluid-w
interactions relative to those of the fluid interparticle intera
tions. The total wall-fluid potential is then given by Eq.~3.2!.
We note thatU4 –10(z) models a wall which is assumed t
comprise a single plane of LJ particles, whileU3 –9 models a
wall that fills the half space@21#. Since both of these wal
potentials decay considerably less rapidly with increas
separation than the LJ interparticle potential of Eq.~4.1!, no
potential truncation was applied.

It is instructive to compare the forms of the two types
fluid-wall potentials@Eq. ~4.2!# with one another, and with
the Lennard-Jones~6–12! interparticle potential@Eq. ~4.1!#.
This comparison is made in Fig. 3 for the case 4e5 f 51.
The relative range of the two wall potentials is exposed
the inset which shows the result of first scaling the w
depth of the 4–10 potential to equal that of the 3–9 poten
and then translating along the abscissa until both min
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coincide. In this representation, one sees that the 3–9 po
tial is both longer ranged and exhibits a broader minim
than the 4–10 potential—a fact which will aid the interpr
tation of the simulation results presented below.

B. Determining the critical isochore

As far as practicable, our simulation strategy has been
try to mimic the experimental adsorption studies of Ref.@1#,
in which G(t) was measured along the bulk critical isocho
as Tc was approached from above. A prerequisite in t
regard is an accurate knowledge of the locus of the b
critical isochore. Within our grand canonical simulatio
framework, this is specified by the functionm(rc ,T). For
the LJ fluid~with r c52.5s), rc is known accurately from a
previous finite-size scaling~FSS! study, as are estimates fo
mc andTc @22#. Hitherto, however, no accurate estimates
the critical isochore itself have been reported. Accordingl
new set of simulations were performed to determ
m(rc ,T) for a range of supercritical temperatures. The
simulations were carried out using simulation geometry~a!
described above.

The procedure adopted for estimatingm(rc ,T) is detailed
below and involves determining, for a given temperatureT,
that value of the chemical potential for which the measu
density matches the known critical point value. Unfort
nately this task is complicated by finite-size effects. W
away from the critical point the correlation lengthj is small,
and provided the linear dimension of the periodic simulat
box L@j, the finite-size functionmL(rc ,T) will provide a
reliable estimate for the bulk isochorem(rc ,T). As the criti-
cal point is approached, however, the correlation len
grows until it is comparable to, or greater than, the syst
size L. In this regime, one expects that estimates
mL(rc ,T) will deviate systematically from the limiting bulk
form.

In principle, FSS methods can be employed to obtain
timates for bulk quantities from simulations of finite siz
@23#. Unfortunately their applicationnear the critical point is
rather less straightforward thanat the critical point. The dif-
ficulties stem from crossover effects associated with nonz

FIG. 3. Comparison of the potentials of Eqs.~4.1! and~4.2! for
the case 4e5 f 51. The inset shows the result of scaling the w
depth of the 4–10 potential to equal that of the 3–9 potential,
translating along the abscissa until the minima coincide.
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values of the two relevant scaling fields@10#, uH and ut ,
which control deviations of the number density and ene
density from their critical point values—see Eqs.~2.1! and
~2.2!. Small but finite values of these fields result in a lar
but finite correlation lengthj, which, owing to computa-
tional restrictions on the range of accessible system si
renders the limitL@j ~in practical terms! unattainable. One
is therefore forced to attempt to extrapolate to the thermo
namic limit using data from system sizes for whichL&j.
However, such an extrapolation is fraught with complic
tions since it requires prior knowledge of the universal sc
ing functions~and associated non-universal amplitudes! con-
trolling the crossover to the thermodynamic limit as bothuutu
anduuHu are increased. To our knowledge, accurate forms
these scaling functions are not available.

In view of these difficulties, we have not attempted a f
FSS analysis of the critical isochore. Instead we have sim
determinedmL(rc ,T) for the largest accessible system siz
and used this as our estimate for the bulk functionm(rc ,T).
Notwithstanding the lack of a FSS analysis, there are for
grounds for believing that for the special case of the criti
isochore, finite-size effects are smaller than on any ot
near-critical isochore. To see this one must consider the
fect on observables of finite values of the scaling fielduuHu.
Specifically, we focus on the ordering operator conjugate
uH , which is given byM.(r2c2s), representing some
particular linear combination of the number and entropy d
sities @25#.

The dependence ofdM5M2Mc on uuHu differs be-
tween the thermodynamic and FSS limits. For the form
case one hasdM;uH

1/d , while, for the latter case,dML

;uHLg/n. It follows that for the special caseuH50, esti-
mates ofdML will agree with the bulk value ofdM for all
L, i.e., exhibit no finite-size dependence. For nonzerouuHu,
however, there will be a finite-size errordML2dM. Spe-
cifically, for a given L one expects that asuuHu is increased
from zero, dML2dM initially increases likeuuHu1/d, but
slows with increasinguuHu, reaching a maximum, at som
uuHu;L2bd/n. Thereafter, further increase inuuHu lead to a
decrease in the magnitude ofdML2dM until, for j!L,
measurements ofdML again agree withdM. Thus asuuHu
is increased from zero, the magnitude of the finite-size e
dML2dM associated with a given choice ofL, first in-
creases from zero, reaches a maximum, and then falls ba
zero.

As far as the number density itself is concerned, one fi
@22# that on the lineuH50, r converges rapidly to its lim-
iting value with increasingL like rL2r;L2(12a)/n. For
nonzerouuHu, the dominant source of finite-size error is th
described above. Thus, for a givenL, the finite-size error in
the measured number density is minimized for state po
on the lineuH50, representing the analytical continuation
the coexistence curve toT.Tc . Given that the critical iso-
chore and the lineuH50 meet at the critical point and sep
rate from one another only weakly asT increases fromTc ~a
feature that we have confirmed numerically!, one can expec
that the scaling fielduH is generally very small on the critica
isochore~see also Sec. II! and hence that the system si
dependence ofmL(rc ,L) is less than it would be on an
subcritical or supercritical isochore within the critical regio
y
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To determine the finite-size critical isochore, the follow
ing procedure was employed. Taking a large, cubic, perio
simulation cell of linear sizeL517.5s, runs were performed
at the bulk critical point, for which@22#, in reduced LJ units,
Tc51.1876(3) andmc /kBTc522.778(2),rc50.3197(4).
At this density, the system contains, on average,N51715
particles. Histogram reweighting@26# was then employed to
estimate forT51.0028Tc , them value for whichr5rc . A
second simulation was then performed at this new s
point, followed by a further extrapolation of the results
obtain mL(rc ,T) for the still higher temperature ofT
51.015Tc . This procedure was then iterated a total of s
times, giving isochoric data at temperaturesT
5Tc ,1.0028Tc ,1.015Tc ,1.053Tc ,1.087Tc , and 1.123Tc .
Combining all six sets of simulation data via the multip
histogram reweighting scheme@26#, it was then possible to
map the entire isochore in the rangeTc,T,1.123Tc . Fig-
ure 4 shows the results, together with the estimate of
critical isochore for a smaller system of linear sizeL
510s, determined using an identical procedure. The diff
ences between these two estimates ofmL(rc ,T) ~inset of
Fig. 4! are less than one part in 104, confirming the expec-
tation that finite-size effects are small.

C. Studies of the slit-pore geometry on the critical isochore

Simulations of the LJ fluid confined to a mesoscopic s
pore ~cf. Sec. IV A! have been carried out for state poin
along the critical isochore of Fig. 4. Most of our studies a
for a system of dimensionsLx5Ly515s and L520s, al-
though some results have also been obtained for a syste
sizesLx565s andL520s in order to gauge the magnitud
of finite-size effects associated with the wall areaA5Lx

2 .
We note that in the experiments of Ref.@2# for SF6 in con-
trolled pore glass~CPG! glass, the pore diameter is about 3
nm, corresponding to about 100 molecular diameters.

Simulation runs comprised 105 Monte Carlo sweeps for
equilibration followed by 53106 sweeps for data collection
Measurements of the density profile were accumulated ev

FIG. 4. The measured isochoremL(rc ,T) for the two periodic
system sizesL517.5s andL510s. The inset displays the differ-
ence between the two estimates.m is the absolute chemical poten
tial ~in units of kBT) subject to the convention of choosing th
thermal wavelengthl51 in the general definition~see Ref.@19#!.
Results are given in terms of LJ reduced units.
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100 sweeps with each sweep involving (Lx /r c)
3 attempted

particle transfers and (Lx /r c)
3 particle translations. Result

have been obtained for both of the wall potentials given
Eq. ~4.2!, and for a range of values of the wall potenti
strengthf.

1. Critical point

Density profilesr(z) at the bulk critical parametersmc
andTc are shown in Fig. 5~a! for the 4–10 potential and Fig
5~b! for the 3–9 potential. In both cases the bulk critic
densityrcs

350.3197 is denoted by a horizontal dotted lin
It is instructive to compare and contrast the density p

files for both forms of wall potential. In all instances there
oscillatory structure close to the walls arising from exclud
volume ‘‘packing’’ effects. The number density at the wa
~as measured, e.g., by the height of the first peak! is princi-
pally controlled by the strength of the wall potential, i.e.,
the value off. Larger values of this parameter lead to a larg
wall density and greater amplitude of oscillations inr(z).
Further away from the walls, the packing effects gradua
die out andr(z) varies smoothly withz. Within this smooth
region, three main regimes of behavior~common to both
wall potentials! can be identified asf is varied. We address
these in turn.

FIG. 5. ~a! The measured density profilesr(z) ~in units of s3)
for the 4–10 potential at the estimated values of the bulk crit
parametersmc and Tc . The system size isLx515s,L520s. Re-
sults for a number of wall strengthsf are displayed@cf. Eq. ~4.2!#
~b! Same as~a! but for the 3–9 potential. In both cases the horizo
tal dotted line denotes the the critical densityrc .
n

l
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-

d
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y

For strongly attractive wall potentials (f 329>0.41,f 4210

>0.77), the density at the wall greatly exceeds the criti
density, and the profile isconvex downwardswith respect to
the critical density. Thus the local densityr(z) everywhere
exceedsrc and decreases with increasing distance from
wall. At no point does it fall torc . This latter feature is in
stark contrast to the simulation results of Schoen and
workers@4,5#, who investigated a very similar model to th
described here. For certain fluid-wall interaction strengt
they reported a density profile that greatly exceedsrc near
the walls, but dipsbelow rc in the slit middle. Recently,
however, this depletion feature was demonstrated to be
artifact @27#, arising jointly from systematic errors in th
simulation procedure used, and an incorrect designation
the critical point parameters@28#.

For weakly attractive fluid-wall interactions (f 329
<0.24,f 4210<0.53) the density at the wall is less than th
critical density and the profile isconvex upwardswith re-
spect to the critical density. Thus the local densityr(z) is
everywhere less thanrc and increases with the distance fro
the wall. At no point does it attain the critical density. Tes
performed at subcritical temperatures indicate that forf val-
ues in this regime, the walls ‘‘prefer’’ the gas phase at co
istence. This is in contrast to the systems studied experim
tally in Refs. @1,2#, where the liquid wets the walls forT
,Tc and which, presumably therefore, correspond~in the
language of the present model! to the largef regime.

Turning now to intermediate wall strengths, the observ
behavior is somewhat subtle. Close to the wall, the packi
induced density oscillations span the critical density. Furt
away from the wall, the magnitude of the profile curvature
generally less than in the large or smallf limits. Interestingly,
there existf values in this regime for whichr(z) exceedsrc ,
but the profile isconcave upwardswith respect to the critical
density. Thusr(z) exceedsrc and increaseswith increasing
distance from the wall. We shall return to discuss this un
pected finding in Sec. V.

Although both types of wall potential exhibit the sam
qualitative behavior in the three regimes off described
above, differences are present in the detail. This is part
larly true for small values off as evidenced, for example, b
a comparison of the profiles forf 3 –950.18 and f 4 –10
50.53. For these profiles the local densities in the slit mid
are almost equal, but the wall density for the 4–10 poten
is considerably greater than that for the 3–9 potential. T
difference reflects the relative range of the two potentials~as
discussed in Sec. IV A! and in particular, the fact that to
obtain a given magnitude of wall potential at the slit midd
(z510), one requiresf 4 –10510f 3 –9.

We round off this subsection with some remarks conce
ing finite-size effects associated with the finite wall areaA
5Lx

2 . In a simulation, the infinite slit-pore limitLx /L→`
cannot be realized for allL values of interest because o
bounds on the computationally accessible system sizes. W
away from criticality, this should elicit no grave conce
because periodic boundary conditions in directions para
to the walls provide a good approximation to the thermod
namic limit. A critical system, on the other hand is alwa
‘‘aware’’ of its boundary conditions, by virtue of its infinite
correlation length. Changes inLx will therefore alter the ef-
fective range of correlations parallel to the walls, whi
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might be expected to couple to those perpendicular to
walls in such as way as to affect the density profiler(z). To
investigate this possibility, we have performed simulations
which we increasedLx from the valueLx515s considered
hitherto, toLx565s. Owing to the high computational cos
associated with such a large simulation cell, it was feasibl
perform this comparison for only one type of wall potenti
and we have chosen the 4–10 form. The results are show
Fig. 6. Comparison with those of Fig. 5~a! reveal that the
increase inLx engenders only small changes in the form
the density profiles, the effect~such as there is! being great-
est for intermediate wall strengths. On this basis it see
unlikely that the general scenario set out above would di
in the infinite slit limit. Nevertheless we feel that the role
wall area on confined critical systems is an issue that
tainly merits a more systematic future investigation.

2. Supercritical temperatures

In this subsection we present results for the tempera
dependence of the density profile on the critical isocho
Both the 3–9 and 4–10 wall potentials have been studie
this regard. However, since it transpires that the qualita
form of the results are similar in both cases, we describe o
those results pertaining to the 4–10 potential.

Figure 7 shows the forms ofr(z) at a selection of tem-
peratures along the critical isochore of Fig. 4, for the c
f 4 –1050.89. Thisf value represents a strongly attractive w
potential, as evidenced by the high wall density. From
figure, one observes that at the critical point the local den
r(z) is large compared torc across the whole width of the
slit. As the temperature is raised, however, the density in
slit middle decreases until, forT*1.09Tc , it reaches the
bulk valuerc .

The explanation for this behavior is straightforward.
the vicinity of the critical point, the correlation length ex
ceeds the slit widthL and the density enhancement at t
walls propagates across the whole slit, raisingr(z) with re-
spect torc . In this regime one expects that for a sufficien
large slit width L, the density would decay to its critica
value like z2b/n, as is the case for critical adsorption at
single wall. Unfortunately our slit pore is much too narro
for r(z) to reach the bulk value in the available range ofz.

FIG. 6. As in Fig. 5~a!, but for a system havingLx565s and
L520s.
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Neither do we observe a pure power law scaling for
variation that is present. This is because there exists no
stantial region ofz ~away from the packing effects near th
walls! which is not simultaneously influenced by the pote
tials of both walls.

As the temperature is increased, there is a concomi
decrease in the bulk correlation lengthj;t2n which at some
point becomes less than the slit widthL. For distances from
the wall that exceedj, the decay ofr(z)2rc is expected to
crossover to an exponential form exp(2z/j). We indeed ob-
serve a rapid relaxation ofr(z) to rc for high temperatures
(T*1.09Tc), although, for reasons similar to those d
scribed above, we have not been able to identify its cha
ter.

In order to quantify the temperature dependence ofr(z),
and to make contact with the experimental studies of R
@1,2# and the theoretical results of Sec. III, we have obtain
the temperature dependence of the adsorption,Gc , defined
by Eq. ~3.15! The form of Gc(t) is shown in Fig. 8 for a
representative selection off values. The observed behavio
falls naturally into three regimes off values, namely, large
intermediate, and small.

For largef ( f 4 –10>0.77), Fig. 8 shows that the adsorptio
increases monotonically ast is reduced to zero from above
Values of f in this range are believed to correspond to t
situation studied experimentally in Refs.@1,2#. As was the
case for density functional theory results of Sec. III, we fi
no evidence for the experimentally observed depletion p
nomenon in whichGc(t) first rises to a peak ast decreases,
and thereafter falls rapidly to negative values as the crit
point is approached.

We have attempted to analyze the form ofGc(t) for large
f at temperature well above criticality. Assuming there exi
a regime for whichL@j@s ~with s the particle diameter!,
one expects thatGc(t) will exhibit the universal scaling be
havior of critical adsorption at a single wall, i.e.,Gc(t)
;tb2n. It is not clear,a priori, that our rather narrow slit
pore provides access to this regime. Nevertheless, Fig
demonstrates that a fairly good fit to this form can
achieved in the high temperature regime.

FIG. 7. The measured density profilesr(z) ~in units of s3) for
the 4–10 potential withf 4 –1050.89 at a selection of temperature
along the critical isochore of Fig. 4. The critical densityrc is de-
noted by a horizontal dotted line.
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As f is reduced toward the intermediate regime,Gc(t)
becomes progressively flatter until, forf 4 –10'0.65, the ad-
sorption appears to exhibit little or no temperature dep
dence. This ‘‘neutral wall’’ scenario presumably arises fro
a ~near! cancellation of two competing factors associat
with the wall potential. On the one hand there is the ‘‘mis
ing neighbors’’ effect@represented by the parameterc in Eq.
~3.4!#, whereby particles close to the wall have their poten
energy raised relative to those in the bulk. On the other ha
there is the reduction in potential energy of particles aris
from the attractive part of the wall potential@cf. the param-
eterew in Eq. ~3.4!#. The cancellation of these two contribu
tions effectively neutralises the influence of the wall on t
fluid, and with it the temperature dependence ofGc . This is
also clearly visible in the corresponding density profiles~Fig.
9!.

FIG. 8. The measured adsorptionGc5*0
L
„r(z)2rc…dz ~ in units

of s2) for the 4–10 potential on the critical isochore, plotted a
function of the reduced temperaturet5(T2Tc)/Tc . The slit width
is L520s. Data are shown for a selection off values, deriving from
multi-histogram reweighting@26# of simulation data collected at si
temperatures in the rangeTc<T<1.123Tc . For the two largestf
values we also show fits to the data in the larget regime, of the
form G(t)5a1btb2n with b2n520.305. Statistical errors do
not exceed the symbol sizes.

FIG. 9. The measured density profilesr(z) ~ in units ofs3) for
the 4–10 potential withf 4 –1050.65 at a selection of temperature
along the critical isochore of Fig. 4. The bulk densityrc is denoted
by a horizontal dotted line.
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Turning finally to smallf values, we find that the adsorp
tion is negative at the critical point, reflecting the fact~cf.
Fig. 5! that r(z),rc for all z. As t increases, however
Gc(t) is observed to increase monotonically with increas
t, although it at no point becomes positive. This increase
Gc is traceable to a progressive relaxation~away from the
walls! of r(z) toward the bulk valuerc . As in the case of
large f discussed above, this effect has its origin in the d
crease of the correlation length.

D. A subcritical isochore

In the experiments of Refs.@1,2#, the adsorption was stud
ied on subcritical isochores having 0.995<r/rc<0.999. Un-
fortunately, in a simulation, it is not practicable to emplo
these same isochores because of the wholesale smearin
of the critical region by finite-size effects. Specificall
in the FSS regime, one finds@25# that Lb/n(r2rc)
.F(uHLd2b/n), whereF is some scaling function. In prac
tical terms, this means that applying a given nonzero b
field to the fluid engenders a much smaller density cha
for a finite-size system than in the bulk limit. As a corollar
one finds that the typical scale of density fluctuations in
critical finite-sized system can be large. Thus for instan
for a cubic simulation cell of sizeL517.5s, the critical
point density fluctuations extend fromr'0.15 to r'0.5.
Clearly therefore a fractional reduction in the density
0.5% would have little discernible effect, either on bu
finite-size or adsorption phenomena.

In view of this, we have chosen to studyGc(t) on the
isochore havingr50.22s2350.68rc . Although this density
is considerably smaller thanrc , it nevertheless lies within
the range of critical point density fluctuations in our finit
sized systems. One can therefore anticipate that if there
critical depletion effect associated with negative values
the bulk field, then it should be visible on this isochore.

The locus of thers350.22 isochore was determined i
the temperature rangeTc,T,1.123Tc using the same pro
cedures as outlined in Sec. IV B. However, an additio
complication in the present case was a greatly increa
finite-size dependence ofmL(r,T). Comparison ofmL(r,T)
for L510s andL517.5s revealed finite-size effects an o
der of magnitude larger than those on the critical isoch
~cf. the inset of Fig. 4!. This feature was discussed in Se
IV B and is traceable to the differing magnitudes of the bu
field uH on each isochore. To ameliorate the problem,
determinedm(r,T) using a very large cubic system of linea
size L540s. Comparison of the results fromL540s with
those from a system of sizeL517.5s showed a discrepanc
of less than two parts in 104.

The form of Gc(t) for the 4–10 potential on thers3

50.22 isochore is presented in Fig. 10. Data are shown
the same selection off values given in Fig. 8. Comparing
these two figures, it is clear that the application of the ne
tive bulk field reduces the adsorption to a considera
greater degree at larget than at smallt. We attribute this to
the large correlation length for smallt, allowing the effect of
the wall density~which is effectively pinned by the choice o
f ) to propagate across the slit, despite the action of the ne
tive bulk field. The net effect is to increase the range
variation ofGc(t) for largef values but to reduce it for sma
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f values. The same qualitative behavior is observed for
3–9 wall potential. However, in no instance do we see a
sign of a rapid critical depletion of the pore density ast
→0.

V. DISCUSSION

The density functional theory~DFT! results and those o
simulation have confirmed the heuristic arguments of Sec
that there should be no critical depletion for a fluid in
single slit pore. In particular, for a fluid on its critical isoch
ore, r5rc , and for strongly attractive walls the adsorptio
Gc increases monotonically asT is reduced towardTc . There
is no evidence of the rapid decrease ofGc nearTc which is
the experimentally observed signature of critical depleti
Although the simulation results~Fig. 8! do not display the
saturation ofGc that is clear in DFT results of Fig. 2, w
believe this reflects the different values ofL and the different
temperature ranges used in the two treatments. In the D
calculations, whereL is very large, saturation does not set
until t;1025, andGc is still decreasing quite rapidly witht
for t>1023. In the simulations, however, whereL520s we
would not expect saturation untilt;t0;331023, and this
is difficult to discern on the scale of Fig. 8. Such a mon
tonic behavior ofGc is consistent with the lattice gas resu
for bulk field H50 @6#. It differs from the Monte Carlo
results of Schoen and co-workers@4,5#, but, as mentioned
earlier, those simulations suffered from systematic err
@27,28#. The physical picture which emerges from both o
present treatments is one in which the density profiles sh
increasing enhancement, with respect torc , in the central
portion of the slit as the correlation lengthj increases and
the decay at each wall becomes slower. Whent;t0, i.e.,
j;L, there is maximum enhancement and maximum
sorption. Increasing the strength of the wall-fluid potent
~the parameterf ) simply raises the overall level of the pro
files and leads to an increase inGc at a given value oft—see
Fig. 8.

For weakly attractive walls~small values off ) the simu-
lation results yield negative values of the adsorption on
critical isochore, withGc(t) monotonically increasing with
increasingt. In this regime off the wall-liquid interface

FIG. 10. The measuredt dependence of the adsorptionGc

5*0
L(r(z)2rc)dz ~ in units of s2) for the 4–10 wall potential on

thers350.22 isochore. Statistical errors do not exceed the sym
sizes.
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would be dry forT,Tc , i.e., the walls prefer gas to liquid
At supercritical temperatures the density near the wal
lower thanrc and the profile increases toward the center
the slit. The closer one is toTc , the slower the increase an
the more negativeGc is. A similar behavior ofGc is found
for very weakly attractive walls~small ew) in our DFT cal-
culations, and was noted earlier by Marconi@15#. By select-
ing an intermediate value off it is possible to construct a
nearly neutral wall for whichG(t) is small in magnitude and
almost independent oft. In this case the density profiles ar
remarkably insensitive tot until very close toTc , where
r(z) has the striking form shown in Fig. 9, i.e., it becom
concave upwards with respect torc . More careful analysis
reveals that for slightly greater values off the profiles exhibit
two symmetric maxima near the walls~but outside the re-
gions of the oscillatory structure! for temperatures close to
Tc . Similar, nonmonotonic profiles were found recently f
two-dimensional critical Ising films in the crossover regim
between ordinary and normal transitions, i.e., for weak s
face fields@29#. Currently we are investigating whether th
nonmonotonic form of the profiles found in the present sim
lations of a Lennard-Jones fluid arises from the same ph
cal mechanism as in the Ising case.

We were motivated to investigate subcritical isocho
because~i! the sorption experiments on porous glasses w
performed forr[(r2rc)/rc520.001 and20.005, and~ii !
the lattice gas studies of Refs.@6,7# suggested that depletio
should occur on a path at fixed bulk fieldDm52H,0. Our
present results for fluids show that no depletion occurs
the wide range of subcritical isochores and pore wid
which we have investigated. The DFT results of Fig. 2 imp
that for the values ofr pertaining to the experiments th
behavior ofGc(t), is changed very little from that on th
critical isochorer 50. Increasingur u does alterGc(t), but
this quantity remains monotonically increasing asT→Tc .
This is in keeping with the simulation results~with large f )
of Fig. 10, although it should be noted that the simulatio
refer to r 520.31 and to a much smaller value ofL than in
the DFT calculations or in the experiments. In summary,
explicit calculations appear to confirm the expectations
Sec. II that, for strongly attractive walls and parameter v
ues of practical interest, the effective bulk field in the fluid
insufficient to driveGc negative beforej;L, i.e., we are in
the regimet r!t0 where depletion does not occur. Altern
tively one can say that for the relevant values ofr, the ex-
perimental pore widthsL are not large enough for the densi
profile to relax from its high value near the walls to its bu
subcritical value in the center. Note that one cannot makeur u
too large without leaving the experimental critical regio
The circumstances of the fluid are different from those of
lattice gas, where for ‘‘reasonable’’ choices of fixed bu
field H one has@6# t0!tH , the parameter equivalent tot r .

We conclude that the adsorption calculated along criti
and subcritical isochores for a single slit pore does not
hibit the depletion observed in the experiments. What th
can be the explanation for the experimental data? One m
speculate that for some reason the density of the refere
cell, which fixes the experimental isochore, was not const
but it is still difficult to see why this might mimic the fixedH
scenario. What is more likely is that the observed deplet
arises from the fact that the porous adsorbent is a com
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solid material consisting of interconnected pores of vario
shapes and sizes whose morphology is poorly underst
Modeling such a material in terms of ideal~nonconnected!
slit pores is, of course, a gross oversimplification. Rec
theoretical and simulation studies@30# show that the phase
behavior of fluids confined in such disordered mediacan be
very different from that which occurs in a single pore, but w
are not aware of investigations of the adsorption along n
critical isochores. It should be possible to employ the mo
porous glasses produced in the quench simulations of G
and Gubbins@31#, which mimic the spinodal decompositio
process used to make real CPG glasses, in such an inv
gation. Were the adsorption to be vastly different from th
found for the ‘‘average’’ single pore this would be a strikin
demonstration of the importance of pore disorder and c
nectivity for critical phenomena. Note that further eviden
that the single pore model is inappropriate to describe
experiments comes from the observation that critical de
tion occurs for the colloidal graphite substrate Vulcan 3G for
r/rc51.01 and 1.04 i.e., for supercritical isochores@1,2#.
Attempts to explain this observation within the single po
model require many further assumptions@6#.
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APPENDIX

For the Landau model the integrals~3.8! and~3.13! can be
performed explicitly in the special case ofDm50 ~on the
critical isochorerb5rc) ~see Ref.@15#!:

L52rc
21/3S D*

b*
D 1/2

~r m
2 1a* /b* !21/2F~fum!, ~A1!

where r m5(r(L/2)2rc)/rc is the reduced density at th
midpoint of the slit, andD* [(Drc

5/3)/kBTc . F(fum) is the
incomplete Jacobi elliptic integral of the first kind@24# with
arguments cosf5rm/rw , wherer w5(r(0)2rc)/rc is the re-
duced density at the wall, andm5(r m

2 12a* /b* )/(2r m
2

12a* /b* ). On the critical isochorerb5rc the adsorption
can also be evaluated@15#:

GG5rc
2/3S 2D*

b*
D 1/2

3 lnU r w
2 1

a*

b*
1F r w

4 2r m
4 1

2a*

b*
~r w

2 2r m
2 !G 1/2

r m
2 1

a*

b*

U
2rcr bL. ~A2!

For Dm,0, i.e., forrb,rc , relation~3.8! between the orde
parameter at the midpointr m and the wall separationL can
s
d.

t

r-
l
lb
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t

-

e
-

l
e

also be expressed in terms of the elliptic integral of the fi
kind. ForT.Tc , a.0, one can also show

L52rc
21/3S 2D*

b*
D 1/2

~pq!21/2F~fum!, ~A3!

where the arguments ofF(fum) are given by

tanf/25S q~r w2r m!

p~r w2r 1! D
1/2

and

m5~1/4!
~p1q!21~r m2r 1!2

pq
.

r 1 is the single real root of the cubic equation

r 31r 2r m1r ~r m
2 12a* /b* !1r m

3 1~2a* /b* !r m

2~4/b* !Dm* 50, ~A4!

and p25(u2r m)21n2, q25(u2r 1)21n2, where u5
2(1/2)(r 11r m) andn25r m

2 2u222ur112a* /b* .
Also for the case of Fisk-Widom free energy, the integr

in the formulas forL and GG can be expressed in terms o
elliptic integrals of the first kind for the special case of t
critical isochoreDm50:

L5S 3D*

b* y
D 1/2

1

l
F~f\p/22a!, ~A5!

wherey5r m
2
„(3a* /b* )1r m

4
… and

l25S 26~a* /b* !

yrm
2

13r m
24D 1/2

, ~A6!

cosf5S l22
1

r m
2

1
1

r w
2 D Y S l21

1

r m
2

2
1

r w
2 D , ~A7!

sin2 a51/22~3/4!
r m

222a* /~b* y!

l2
, ~A8!

and

GG5S 3D*

b*
D 1/2

rc

1

l
F~f\a!2rcr bL, ~A9!

where

l25„3~a* /b* !13r m
4
…

1/2, ~A10!

cosf5~l22r w
2 1r m

2 !/~l21r m
2 2r w

2 !, ~A11!

sin2 a51/22
3

4
~r m

2 /l2!. ~A12!

Equivalent forms were derived in Ref.@15#, where they were
used to study the behavior of the adsorption in the crosso
regime from the noncritical to the scaling region as a fun
tion of wall separation and surface fields.
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