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Effects of confinement on critical adsorption: Absence of critical depletion for fluids in slit pores
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The adsorption of a near-critical fluid confined in a slit pore is investigated by means of density functional
theory and by Monte Carlo simulation for a Lennard-Jones fluid. Our work was stimulated by recent experi-
ments for Sg adsorbed in a mesoporous glass, which showed the striking phenomenon of critical depletion,
i.e., the adsorption exceds first increases but then decreases very rapidly to negative values as the bulk
critical temperaturdl is approached from above along near-critical isochores. By contrast, our density func-
tional and simulation results, for a range of strongly attractive wall-fluid potentials, $homonotonically
increasingand eventually saturating as the temperature is lowered toWaedong both the critical = p.)
and subcritical isochorep& p.). Such behavior results from the increasingly slow decay of the density profile
away from the walls, into the middle of the slit, &+ T, . For p<p. we find that in the fluid the effective
bulk field, which is negative and which favors desorption, is insufficient to dominate the effects of the surface
fields which favor adsorption. We compare this situation with earlier results for the lattice gas model with a
constant(negative bulk field where critical depletion was found. A qualitatively different behavior of the
density profiles and adsorption is found in simulations for intermediate and weakly attractive wall-fluid poten-
tials, but in no case do we observe the critical depletion found in experiments. We conclude that the latter
cannot be accounted for by a single pore mop81063-651X99)03012-3

PACS numbg(s): 64.60.Fr, 05.70.Jk, 68.35.Rh, 68.3&

[. INTRODUCTION Gennes argued that as—~0 along the critical isochorep(
=p.), the adsorptiol” takes on the asymptotic, universal
The term “critical depletion” was introduced in connec- form
tion with experiments designed to study the phenomenon of
critical adsorption for a pure fluid at a solid substrpie?].
When a fluid is brought to its bulk critical point in the pres-
ence of an attracting external wall or substrate, for example
along a critical isochore, the amount adsorliadsorption  where z is the distance measured normal to the substrate,
diverges asr=(T—T.)/T.—0. T, is the critical tempera- located atz=0. B is the critical exponent describing the
ture. Theory[3] attributes these divergences to the fact thatvanishing of the bulk OP an@— v~ —0.305 for Ising mag-
the wall causes a perturbation of the order param@®)  nets or fluids. In Ref{1] measurements were performed for
profilem(z)=p(z) — p., wherep(z) is the density profile, to  SF; adsorbed on a finely dividegolloidal) graphite adsor-
extend over a distance ¢, the bulk correlation length, from bent(Vulcan 33G). The volumetric method employed in these
the surface. Close to criticality, where~|7|~” (v is the  experiments measurdd directly on approaching the critical
critical exponent the OP profile differs from its bulk value point along the critical or near-critical isochores. Although
(fixed by the properties of the reservoir far from the sub-increased as was reduced, consistent with Ed..2), close
stratg over macroscopic distances, and the adsorption can e T, (7~5x 10 %) the adsorption reached a maximum and
a diverging quantity. Fisher and de Genri&$ postulated decreased sharply, taking on negative values very close to
that near criticality the OP profile should be described inT,. Microgravity experiments by the same group confirmed
terms of a universal scaling function, i.e., sufficiently closethese result§l,2]. The critical depletion of® was attributed
jecture, were performed on the sorption ofgSifr a mesopo-
, (1.7 rous glass CPG-350, which comprises a rigid interconnected
where NV is a universal scaling function. Fisher and deshowed a temperature dependence very similar to that found
for the colloidal graphite adsorbent.
Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Pdng the origin of the striking behavior df and, in particular,
land. to answer the fundamental question as to whether critical

FEme(z)dz~ TRE~P, (1.2
0

to T, and for sufficiently strongly attracting walls, to the confining effects of colloidal particles on the near-
critical fluid, and new experiments, designed to test this con-
z
m( Z) = TB/\/< E
system of mesopores with a nominal pore diameter of 31 nm.
For the rigid porous material the measured adsorption
These experimental results have stimulated several simu-
*Permanent address: Institute of Physical Chemistry, Polistiation[4,5] and theoretical studid$,7] aimed at understand-
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depletion is a single pore phenomenon like, for examplewas shown that the near-critical fluctuations can lead to an
capillary condensatiofi8], which arises from the combined even richer variation of’(7). For certain values of, in
effects of wall-fluid forces and finite size, and which mani- addition to the maximum, a minimum df appears where
fests itself in simple confining geometries. The grand canonithe correlation length approaches the pore width, and the
cal Monte Carlo simulationf4,5] of a Lennard-Jones fluid competition between the effect of adsorbing walls and the
confined between two structureless, attractive planar wallfarge susceptibility of the central regidfavoring the dilute
indicated that the average, local density in the middle of thiphase becomes particularly strong. For webk<0 the re-
slit pore could fall belowp, under near-critical conditions, sults forI'(7) obtained in the lattice gadsing) model of a
thereby leading to depletion. However, it was shown recentlysingle pore look very similar to those measured in the ex-
that the depletion found in Ref§4,5] is an artifact of the periments of Refs[1] and[2]. In the experiments for SF
simulation procedurf27]. Theoretical studieg6] of the sim-  adsorbed in the controlled pore glass, the actual isochores
plest model of a confined fluid, namely, a lattice gas subjectorrespond to densities lower than critical, i&.p.=0.995
to identical surface fields located at two walls, revealed aand 0.999, so thak u<O0.
physical mechanism which could cause a dramatic decrease |t is then tempting to argue that sindgu <0, there is an
of the adsorption’ on approachingl, along near-critical effective bulk fieldH<0 which competes with the surface
isochores. Consider the situation when the density of theields to give rise to critical depletion. Although this is a
bulk reservoir is slightly lower than critical. Transcription of plausible explanation of the observed phenomenon, it does
the lattice gas into the Ising model sets the chemical potemot take into account the actual situation in a fluid. For ex-
tial difference ample, if the bulk density is fixed according to the experi-
mental condition of the fluid reservoityw, as defined by
Ap=p(p,T)— pulpe, T)=2H, (1.3 Eq.(1.3), will vary asT approached .. The corresponding
bulk magnetic field will vary in the same way. In the present
paper we show that taking into account the temperature de-
pendence ofA u has a profound effect on the behavior of
confined fluids neal .. In particular we find that under the
)éxperimental conditions of Ref$1,2] a simple fluid con-
fined in a single slit pore should not exhibit critical depletion.
R@ther the adsorption should increase monotonicallyr as
%o This implies that an explanation of the experimental
servations is still lacking.
Our paper is organized as follows. In Sec. Il we recon-
sider the physical mechanism which leads to critical deple-
tion of adsorption in the case of the lattice gas model of a
pore considered in Reff6], and give a heuristic argument as
(1.4 to why this phenomenon should not be expected for real
' fluids when the reservoir density is fixed according to experi-
where y is the susceptibility. Near the walls, on the other mental conditions. Our argument is supported by explicit cal-
hand, the fluid should behave as in a semi-infinite nearculations ofl" using the density functional approach, and by
critical system subject to a surface field. “Bulk” and “sur- grand canonical Monte Carlo simulations of the Lennard-
face” fields give diverging contributions, but of opposite Jones fluid in a slit pore. In Sec. Il we report density func-
sign, to the adsorptioR for 7— 0. For large pore widths and tional results obtained from a square gradient approximation
for > 7,, wherer, is defined by&(ro)~L, the adsorption !0 the free energy functional and short-rangeohtacy wall-

whereu(p;,T) is the chemical potential on the critical iso-
chore, andH is the bulk magnetic field. Thus fgs<p,,
Ap=2H<0, and the bulk field favors the dilutégag
phase. If the surface fields are sufficiently attractive that the
favor adsorption of the dengéquid) phase, then one has a
competition between bulk and surface fields which influ-
ences the shape of the OP profile and hence the behavior of
the adsorption in the slit pore. When the pore is large an%b
when the bulk correlation length is much smaller than the
width of the porel, then the fluid in the middle part of the
pore should behave as a bulk fluid. For wéékhe bulk OP
(magnetizationin the critical region behaves as

mb:HX""HT_y,

can be approximated, fi <0, by fluid potentials. Both classical and nonclassical bulk free en-
ergy densities are employed, and in the classical case we
[~ A B — A, |H|77 L, (1.5 investigate two forms of the free energy density, namely, the

Landau model free energy and the free energy of the
where A; and A, are positive amplitudes. Sincg>(v  Lennard-Jones fluid as obtained in Réf] from an accurate
— ), the second term always dominates Tosufficiently  fit to simulation data. Section IV describes the computer
close to T, provided [H| is sufficiently strong, and, as a simulations of the density profiles and adsorption of the
consequence, depletion Bfwill occur. For even smaller, Lennard-Jones fluid on the critical isochore and for a sub-
such thatr<r,, the adsorption saturates at a value whichcritical isochorep<<p.. Results are presented for various
depends oM and on the surface field. The lattice gas modelstrengths of the 4—10 and 3-9 wall-fluid potentials. We con-
of a single pore predicts critical depletion fpr<p, only.  clude in Sec. V with a discussion of the relevance of our
For the case of the critical isochoge=p., the bulk field findings for the experiments described earlier.
H=0, and asr is reducedl first increases monotonically,
following the Fisher—de Gennes power law, and eventually
saturates, taking on a positive valuerat0 (T=T,) [6].

This scenario was confirmed by explicit mean-field lattice Here we reconsider the scaling argumggitthat predicts
gas calculationf6] and for two dimensional Ising films, with critical depletion in the lattice gas model of a single pore,
bulk and surface fields of opposite sign, by density matrixand modify it to incorporate two features that are relevant for
renormalization group calculatiori§]. In the latter case it the case of fluids. First, in order to mimic the experimental

Il. HEURISTIC ARGUMENT
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situation more closely, one should account for the fact thatvhere. A;=(3/4).A4, and.A,=3.A,, and for consistency with

Au=u(p,T)— u(pc,T) will vary as the temperaturé ap- the vdW approach the critical exponents should take on their

proachesT, at constanp. This implies that the correspond- classical value3=v=1/2 andy=1 and the first(critical

ing bulk magnetic fieldH should also vary witfT, and there-  adsorption term diverges as- In 7. Apart from the addi-

fore that the second term of the approximate forml®)  tional temperature independent term, E26) has the same

for the adsorptiol” might have a different- dependence. form as for a constant bulk fieltEq. (1.5]. The additional

This in turn may affect the result of the competition betweenterm does not affect the shape of the culgr). It simply

the bulk and surface fields. shiftsI'(7) as a whole toward negative values and for large
Second the lattice gas model considered in Rfhas an  widths of the poreL and (or) relatively large|r| it could

exact particle-hole symmetry, which corresponds to thedrive I negative sufficiently far from the critical poiffarge

trivial symmetry under reversal of the field in the equiva- 7). Closer toT, the temperature dependent terms dominate

lent Ising model. For real fluids such symmetry is only ap-and the analysis df (7) as a function oH andL performed

proximate. It is well established that the reduced symmetryn Ref. [6] for constant bulk fielcH, goes through withH|

of fluids leads to scaling field mixing close to the critical replaced byr|3. Following Ref.[6] we rewrite Eq.(2.6) in

point [10]. To linear order inr and inw(p,T) — ue, Where  the form

me=u(pc,To), the scaling fields have the forms

T v—A
UHEM(p,T)_,LLC_ClT, (21) F(T):TB_V "41_(7r _A4|r|L1 (27)
u,=7+C(u(p,T)— po), (2.2 where
where the parameters andc, are system-dependefrton- 7= (Ag|r[3L) YA, 2.9

universa) quantities controlling the degree of field mixing.

Cq is identifie_d as the Iimiting critical slope of the coexist- 3nd we have used the exponent relatjad] y=A— g to
ence curve, i.e.¢;/To=limr_7 du®(T)/dT. In order to  jntroduce the gap exponedt. Once again it is understood
account for the asymmetry of a real fluid near its criticalthat the exponents take their classical values. In the region of
point one should identify the bulk fieldF2 with uy rather  validity of approximation(1.5), i.e., for 1>7>r1, with
than withA u in the scaling analysis. &(19) ~L three different ranges of, with qualitatively dif-
The temperature dependence of the bulk fidldepends ferent behaviors of (7) can be distinguishefb].
on the particular equation of state. Consider first the simplest (1) 7,<<7,. In this case the first term in square brackets in
possibility, i.e., the classical equation of state in the criticalEq. (2.7) dominates in the whole region of validity of this
region given by retaining only the leading terms of the ex-approximation since/7,>1 andv— A is negative. Hence in
panded van der WaalgdW) equation of state. In terms of this region the adsorption should increase monotonically as
reduced temperature and densityr=(p—p¢)/pc the vdW  r—0.
equation of state reads (2) 7,>1. This condition is equivalent tfr[3L>1. In
this caser/ 7,<1 throughout the critical region, and the sec-
ond term in square brackets in E®.7) dominates. Hence
the adsorption is negative an@sorptiontakes place despite
(2.3)  the presence of adsorbing walls.
. " , (3) o< 7,<1. For a given pore width , the second term

whereAu* =Aul/Pevc, P is the critical pressure, and is i square brackets in Eq2.7) dominates so long as< ,
the qrmcal vqlume per molecu!g. The Igadmg order behaviory 4 thenl'(7) is negative. Asr increasesI'(7) reaches a
of this equation in the near-critical region is maximum forr=r, . Finally for 7 7, the constant term in

At =6r 74 3rd 2.9 square brackets in EqR.7) dominates over the second term,

2 ' and for such temperatures the usual Fisher—de Gennes type

of adsorption should occur.

where we have ignored tern®(r) andO(«r ) and higher. We now consider values of parameters appropriate to the
Note that Eq.(2.4) exhibits particle-hole symmetry in that experiments of Refd1,2]. Assume that./o~1C? is of the

Aup* along an isotherm is antisymmetric with respect to the™: . . .
critical isochore size of the nominal pore diametes (is the molecular size

of the mesoporous glass used as the adsorbent.r For
Ap*(=r,7)=—Au*(r,7). (2.5 —0.001 and—0.005, corresponding to the two near-critical
isochores along which'(7) was measuredr,~10 ' and
Moreover, for this case there is no scaling field mixing and10™°. For this value ofl, 7,~10"* and r,<7o. Then ac-

uy=Au* whose magnitudeecreasesinearly in r asT.is  cording to the above discussion the adsorpfioshouldin-
approached at constant crease monotonicallgs T is lowered towardT following

In order to analyze the influence of madependent bulk these two isochores. Even for densities that deviate more
field on the behavior of the adsorptidi(7), we reconsider strongly fromp¢, e.g.,r=-0.01 and 7~10"%~ 7o, the
the approximate formulél.5). For the expanded vdW equa- condition of the casé3) for the occurence of depletion &f

tion of state(2.4) andr<0 (p<p.), Eq. (1.5 becomes might still not be satisfied. It is also very likely that for these
values ofr andL the adsorption is positive for~ 7y, and

L~A 7P = Ag|r[Pr 7L — Ayr|L, (2.6)  hence forr<ry it should saturate at a positive value.

2
+4(1+7)

Ap*=-6 81+I ! 1
wi=brmg i )

1+r
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It is important to contrast this constant(density sce- whereé is the critical exponent anB is an amplitude for
nario with the constant lattice gas described in Ref6].  the power law on the critical isotherm, ah@x) is a scaling
There depletion was observed for fieltts in the range function. Note thatA u= u(p,T)— ut°{T) for 7<0 and
—107 to —1.5x10"“. These were sufficiently strong to §=1+ y/B. Althougha priori there is no theoretical expres-
drive I negative forr> 7, i.e., while§ was smaller thah.  sion for h(x), the scaling function should satisfy several
I' then saturated at a negative value fet 7. In the present conditions following from requirements of thermodynamic
case, even for values ofas negative as 0.01, the effective stability and analyticity of the chemical potential. THu(s)
field might not be strong enough to dritenegative before should be analytic in its range of definitior 1<x<ee,
&é~L, and thenl” would saturate at a positive value. equal to 0 atx=—1, the coexistence curve, and possess an

Our analysis so far has been based on(Edl). Now we  (asymptoti¢ series expansion near=c (the critical isoch-
consider equations of state which do not incorporate symmeoare) of the form
try (2.5 in the u-T plane. For systems described by such
equations of state, the “true” scaling fields are nay and o
u, and by analogy with bulk10] the “true” OP m(z) which h(x)= >, npxPer1-2m (2.12
satisfies the scaling relatiori$.1) and(1.2) is notp—p. but n=1
rather the linear combination of the number and entropy den-
sities (p— pe) — C2(s—S.). The entropy term in the OP does For small values ok, h(x) should have an expansion of the
not change the leading asymptotic behavior of the adsorptioform
for the semi-infinite system; it gives rise to a “correction
term” to Eq. (1.2) of order7*~¢~”, wherea is the specific *
heat critical exponent. In the scaling analysisloffor the h(x)=1+ >, hx". (2.13
confined system, the scaling fieltl should now be replaced n=1
by uy . In order to see if this can change the behaviof of
we first consider equations of state that are linear,jras  1he leading temperature dependenceAqf on the near-
was the case in the vdW equation of state. For all such equéitical isochores is given by the first term in expansion
tions the “mixed” scaling fieldu, reduces to Bl defined by ~ (2.12, and the leading dependence is given by the first
Eq. (1.3). This is due to the fact that the chemical potentialterm in expansion2.13, i.e.,
on the critical isochore and the chemical potential at coexist-
ence have the same limiting slope @, i.e., ¢;/T, Ap~nir 77+ Dor|r|?7 3, (2.19
= IimT_,Tc—(d,uco‘f"/dT):IimTﬂT+(&,u(,o,T)/aT)pc so that

¢ whereD, and », are amplitudes. For classical exponents this
Up=pu(p,T)—pe—Cy7 expression is consistent with E.4). Using this form for
the bulk field H~Au, we can repeat the analysis per-
formed above. Equationi2.7) remains valid, but nowr,
Th : . . . . ~(|r|°L)YA =" For real fluidss~4.78, which means that
us, for classical equations of state which are linear in temfhe values ofr. are even smaller for a aiventhan in the
perature, the reduced symmetry of the fluid does not influ'c:lassical caser This implies that the efgflective bulk field is
ence the temperature behavior of the bulk fieltH =2A u K f .th c?'t' f th . t and th
differs from the leading order behavior only by terms higherVery weak Tor Iné condiions of the experiment, an us

in r. For example, in the case of the vdW equation of Statedeplet|on of the adsorptiohi should not occur. Rather, satu-

these are of order® and =13 ration of I at positive values should be expected.
If the equation of state is not linear in temperature, then

=Ap+u(pe, T)—pe—Ci7=Ap=2H. (2.9

Ill. RESULTS FROM DENSITY FUNCTIONAL THEORY
Uy=Ap+u(pe,T) = pe—Ci7=Ap+a7*+0(7%),
(2.10 In this section we report the results of density functional
calculations for the adsorptioh of a near-critical simple

wherea, is a constant coefficient. Thus the temperature defluid confined in a slitike pore. These results provide an
pendence of the scaled fielg}, , which now plays the role of explicit test of the heuristic ideas given above.
the bulk fieldH, differs from that ofA w, but only by terms Specifically, we consider a fluid confined between two
of higher order inr. identical parallel adsorbing walls locatedzt 0 andz=L,

We conclude that differences arising from the reducedand infinite in thex andy directions. The system is in contact
symmetry of the fluid, i.e., “mixed” scaling fields, are not with a bulk reservoir at fixed temperatuieand chemical
important for the behavior of the adsorption. The presence ofotentialu. The equilibrium profile is obtained by minimiz-
higher order terms im and 7 do not change the conclusions ing the grand potential functionfl3]
of our analysis performed using E(.4). Thus our predic-
tions of no depletion of adsorption along near-critical isoch-
ores should be valid for all classical equations of state. Q[p]=f[p]—f dr(u—V(r))p(r), (3.0

Of course real fluids are nonclassical. Our argument can

be extended using the fact that near criticality real fluids . . .
should obey the scaled equation of stt2] whereV(r) is the total wall-fluid external potential,

Ap=r|r|?IDoh(7/|r|YF), (2.11 V(r)=V(z)=U(z)+U(L-2), (3.2
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andU(z) is the solid-fluid potential due to a single wall. The

EFFECTS OF CONFINEMENT ON CRITICA. ..

7109

between the walls[15,16, i.e., F(L)=—2(dy/dl)t,,

equilibrium density profilep(r)=p(z) corresponds to the wherey is the equilibrium value ofy[p]. It may be deter-

minimum of Q[p]. We choose the simplest form fdR

mined from the equations

based on the square gradient approximation to the intrinsic

free energy functional{ p], and model the wall-fluid con-
tribution by a termd ¢ which depends only on the fluid den-
sity at contact, i.e., op(0)=p(L). In this approximation

dp
[(p)— ¥(p(LI2))]*?
(3.8

L=(2D) sgrp(0)— p(L12) [ "
p(L12)

the grand-potential excess per unit area is the following func-

tional [14]:

and

2

F=—y(p(L/2), (3.9

both of which follow from Eq.(3.7) along with

dp

dz

D
H(p)+ > . (33

L
f dz
0
Here y/(p)=w(p) + P is the excess grand-potential, density,
i.e., w(p)=Tf(p)— wup is the grand potential densitip,is the
pressure, andl(p) is the Helmholtz free energy density of a

homogenous fluid of density. For T<T. #(p) has tWo \yhich follows from the boundary conditiof8.6). The key

minima cprresponding to _the two distinct bulk phases. A,tquantity of this study, the Gibbs adsorptibg (coveragg, is
bulk coexistence both minima are equal to zero. The coeffiyqafined as

cientD is related to the second moment of the direct corre-
lation function[13], but for simplicity we choose it to be
density independent. The wall-fluid term has the form

1
Npel= 2 + Dy

1
P(p(0) = dlp(LI2))= 55 (cp(0) = ew?, (310

L
Fo= fo (p(2)— po)diz (310

with p,, the density of the bulk fluid at chemical potentjal
and temperaturd@. I' satisfies the Gibbs adsorption equa-
The first term, withc>0, represents a reduction of attractive tlon
pair interactions between fluid particles at the surface arising Feg=—2(ay(L)ow)t, (3.12
from exclusion of the fluid by a wall. The second term with

e,,>0 measures the strength of the attractive wall potentialwhich gives, using Eq(3.3), the following expression for
Symmetry of the wall-fluid potential dictates that(0) [I'c:
=p(L) anddp/dz=0 atz=L/2.

It is well known that functionals of this type cannot in-
corporate short-ranged correlations, and hence cannot acount
for oscillations of the density profile which occur near the
walls[8]. However, they should capture the main features of
critical adsorption in large pores, as this phenomenon is
dominated by the behavior of the profile far from the walls. In order to test our predictions from Sec. Il we chose three
Indeed they were succesfully employed by Marddr] ina  different models for/(p) and calculated the adsorption as a
pioneering study of the effects of finite size on critical ad-function of temperature on approachifigfrom above along
sorption. near-critical isochores, i.e., for fixep=<p,.

Minimization of Eq.(3.3) yields an equation for the den- (a) Landau model free energhn this case we expand the
sity profile p(2), grand potential densitw(p) and the pressur®=— w(py)
about the critical density.. In terms of reduced variables

D=5 (p(0)+ p(L) - eup(0) +p(L)). (3.4

I's=(2D)"?sgr(p(0)

)fﬂ((’) dp(p(2) = pp) (
(L[ ¢ p) — P(p(L12))]¥2

—p(LI 3.13

d?p(2) dy r=(p—pc)l/p. andry=_pp,—pc)/p. the dimensionless ex-
= , 3. ial i
2 dp(2) (3.5  cess grand potential is
a* b*
with boundary condition at the wali=0, Jr(r)= 7(r2—r§)+ T(r“—rﬁ)—(r —rp)Au*,
D d— =Cp(0)—8W. (36) " %
Z J,-o where ¢* = (p)/kgTcpe and KgTc/pc)a*=a=(duldp)t
at p=pe, (keTe/pe)b*=b=5(°uldp®r at p=p., and
Equation(3.5) has a first integral Au*=(u—u(pe,T)) kT, [18].
5 Such a choice fory(p) corresponds to the simplest mean-
Didp(2)|”_ (p)+F 3.7 field or Landau description of a model fluid exhibiting
2| dz | o ' ' particle-hole symmetry. For the special casg=0 (on the

critical isochorep,= p.) the integralg3.8) and(3.13 can be
whereF is a constant of integration, independentzoivhose  performed explicitly in terms of the incomplete Jacobi ellip-
value depends off, L, and . The functionF(L), which tic integral of the first kind[24]. For Aux<O0, i.e., for py
vanishes at —«, can be identified with the solvation force <p., relation(3.8) between the order parameter at the mid-
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point r,, and the wall separatioh can also be expressed in

terms of the elliptic integral of the first kingsee the Appen-

dix). 100 |
For a given value of the separatitnbetween the walls

and for fixed bulk density,, we determined the reduced

densitiesr,, andr,, and F(L) at various temperatures, cor- e

responding tor between 0.1 and 0, using a graphical con-

struction[16] along with Eq.(3.8). For a givenL there is

only one solution in this range of temperatures. At each tem-

perature we calculate numerically the integi&il3 for I'g

using the Romberg method. As a check of the accuracy we

0.0 |

calculatedl" s for r,=0 using analytical expressions for in- 100, 7 ¥ 5 o v 2
tegrals (3.8 and (3.13 in terms of the incomplete Jacobi  (a) (T-T T,
elliptic integral of the first kind.

We performed our calculations using parameggfsand
b* obtained by fitting the critical temperature and the critical
density of Sk, i.e., p.=3.05 nm 3 andT,=318.7 K, using
a generalized vdW equation of stafeee Ref[15] for de-
tails). We finda* =2.764r andb* =0.113. The value ob
was taken from Ref.15], giving D* =1.094. The wall fields
c ande,, were treated as independent parameters which were
varied in order to examine the influence of the strength of the
wall potential on the behavior df (7).

We studied systems with different wall separatidns
ranging between 25 and 200 nm. For eachnd fixed wall
fieldsc ande,,, we calculated ¢(7) along the critical iso-
chore and for several near-critical isochores, i.e., for fixed
between 0 and-0.1.

The results forL=100 nm,c*=c/D=0.5 nm !, and
er=e,/(pc.D)=1 nm!, and several values of,, are
shown in Fig. 1a). A similar behavior of the adsorption is 30.0 . i , i
found for the other values df we considered. Note that the
effective hard-sphere diameter resulting from fitting the SF
data is 0.433 nnj15]. In order to allow for a more direct 200 |
comparison with the analysis of Sec. Il, and with the results
from the lattice gaglsing) model of Ref.[6], in Fig. 1 we
plot the quantity

o L
— 10.0

L
Pe=[Caap@-po-Torprt (319
0.0}

rather than Gibbs adsorptidf;. Our choice for the coeffi-
cientsc* ande,, corresponds to walls that attract fluid rather 100 ,
strongly. On the critical isochore, i.e., fog=0, the reduced "0’ 10 10° 10
contact density,,~0.57 atT=T,, and does not change very c) (T-T )T,
much as the temperature is increased. Our results show no
depletion; for all choices of the bulk density, the curves
I'.(7) increase monotonically with decreasing The ad-

sorption first increases asapproached; from above, and (3.15 as a function of the deviation from the bulk critical tempera-

tbgnl s;;curatels sutfflc?ntl){. clqse fbct EXK/?pt for rbf: th ture, calculated in three different modelg. Landau model for wall
-4, e value at saturation IS positive. Moreover for eseparati0r1_=100 nm, surface field}, =1 nm ! and surface cou-

isochores which are the nearest to the critical one, i.e., foﬁling ¢*=0.5 nmi L. The curves correspond to different values of
Osrgf—0.0L the values of’¢(7) are very close forr  the reduced bulk reservoir density=(p— pc)/p. . From the top to
<10"" and the adsorption saturatesrat 10"~ correspond-  the hottom, r,=0,—0.005-0.01~0.03—0.05, and —0.1. (b)
ing to {~L, which agrees with the result found from the model with the free energy density of the LJ fluid for wall separa-
Ising model[6]. We have examined the behavior Bf(7)  tion L=500, whereo is the LJ atomic diameter, surface field,

for several choices of the coefficient$ and e}, but no  =0.75 nnT%, and surface coupling* =0.5 nnm*. The curves cor-
qualitative differences in behavior have been found. Whenespond to the following values of,: r,=0,—0.005;-0.01,
the strength of the wall-fluid interactios, decreases, the —0.1, and—0.15.(c) Fisk-Widom model for the samk, &y, , c*,
degree of adsorption becomes smaller. andry, as in the Landau model.

L
7]

—_—

FIG. 1. AdsorptionI',(7) (in units of nm 2) defined by Eq.
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(b) Lennard-Jones fluid free energis a second model " ' " '
we chosé (p) to be the Helmholtz free energy density of the
Lennard-JoneélJ) fluid as given by the empirical, modified 010k
Benedict-Webb-RubiiMBWR) equation of stat¢9]

8 *i 6
a.
f*(p*)=p* A% (p*)=p* ‘Elﬁ —"i) +‘§1§ biG; | +p* A%,
i= i=
(316 0.00 |

where f*(p*)=f(p)o®le and p* =pos. € is the LI well

depth ando is the LJ atomic diameteAY; is the ideal gas

term, a; andb; are nonlinear functions of temperature, and

G, are functions of the densitp* (see Ref.[9]). The .
MBWR equation is a classical equation of state obtained by 1% 10 10 10
fitting to simulation data. It describes the near-critical region (T-T)T,
of a LJ fluid quite accurately. Since it is nonlinear in tem-
perature, it does not possess the particle-hole symmetry %nction of the deviation from the bulk critical temperature calcu-

Eq. (2.5. L . lated in the Fisk-Widom model for the same parameters as in Fig.
In order to calculate the adsorption in this model we Pro— )

ceed along the lines described above for the the Landau

model, but now we perform all the integrals numerically. WecientD can then be treated as a constant, whereas in reality
fit the parameters to the critical temperature and critical denb diverges asr™ 7. We defineD*Engch, which has

sity of Sk and the parametdD is obtained from the rela- dimension length squared.

8 —4

10

FIG. 2. The reduced midpoint density,= (p(L/2)—p.)/p. as a

tionsa=(duldp)t. atp=p. and As for the Landau model, the integrals in the formulas for
oy L andI'g can be expressed in terms of elliptic integrals of
alD=¢§, ", (3.17  the first kind for the special case of the critical isochore

. ) . Au=0 (see the Appendjx We use these formulas to calcu-
with »=1 the classical valu&,, the correlation-length am- late T',, along the critical isochore. Faku#0 we evaluate
plitude, is set equal to the experimental value 0.2 nm fokpe integral forl” numerically. The paramete®*, a*, and
SFs. We find D/(0%€)=0.364 nnt ando=0.467 nm. b* were obtained, following Ref[15], from the Missoni-
~ Figure Xb) shows the results fof; for the wall separa- | gyelt Sengers-Green nonclassical equation of state and
tion L=500 andr,, between 0 and-0.15. The wall fields  from relation(3.17). These were fitted, as in previous mod-
are chosen to be equal to*=c/D=05nm" and &, els, to the experimental values Bf, p, and&, for SF;. The
=&, /(pc,D)=0.75 nm!, which yields a contact density critical pressureP,=3.7605 MPa.
ry~0.51 at the critical point. The shapes of the curves are Figure Ic) shows our results fof' . calculated for the
very similar to those for the Landau model. The absolutesgme wall separatioh= 100 nm, the same values of the wall
values ofl"; are smaller a& is much smaller than the value fieids ¢*=0.5 nm%, and eX=1nm?! and the same
used for the Landau model. Note that for this wall separationsngices of the reduced bulk densitieg as the results ob-
the density of the bulk reservoir must be further removedgined from the Landau model and shown in Fig) 1Again,
from p in order to shift the whole adsorption curve below there is no depletion, and the overall form of the results for
zero; forr,=—0.15, I’ still saturates at a positive value.  the adsorption is similar to that for the Landau model and for

(c) Fisk-Widom free energyn order to incorporate non-  the model with the LJ fluid free energy density. The adsorp-
classical critical exponents, we emp_loy the S|mple§t posslblgon is stronger sincg— v= — 1/3 for this model rather than
approach that goes beyond mean field, i.e., the Fisk-Widong (jpgarithmic increasefor mean field. After saturation has
functional[17]. This has the form of Eq3.3) with the grand  get in, j.e., forr<2x 1076, I, is almost independent of, .

potential density3.14 replaced by From the plot of the midpoint density,, as a function of
. b temperaturéFig. 2), we see that the temperature dependence
*(r)= a_(r2_ )+ —— (o =2 Y — (r—ry) Ap*, of the adsorption along the isochores mimics the temperature
2 6+1 dependence af,,. r,, takes on a value equal tg for large

(3.18 7 and then increases as—0. This behavior is completely
different from the case of the of the lattice-gésing) model

_ N
where y*=y(p)/P. and P./pc)a*=a=(duldp)r at p  \yith constant negative bulk field in which the magnetization

— o+1 — —

=Pc» and  Pc/pc )b*=b and  Au*=(x  pecomes more negative @s is approached from above.
—u(pe,T))pc/P.. The parametem now vanishes as the

“exact” inverse compressibilitya~ 7¥ and the dimension- IV. SIMULATION STUDIES OF A LENNARD-JONES
less quantities are defined in a slightly different way from ELUID

those in the Landau model—see below Ej14). Following
Ref. [15] we invoke rational approximants for the critical
exponents, i.e.y=4/3, v=2/3, =1/3, and§=5. In this We have performed Monte Carlo simulations of a simple
approximation the specific heat exponentind the correla- one component fluid, interacting via an interparticle potential
tion function exponent; are equal to zero, and the coeffi- of the LJ form:

A. Computational details
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FA-F] e

Here, as in Sec. llle measures the well depth of the poten- 4r
tial, while o sets the length scale. As is customary in simu-
lations of systems whose interparticle potential decays rap-
idly with particle separation, the LJ potential was truncated
in order to reduce the computational effort. In accordance
with many previous studies of the LJ system, the cutoff ra-
dius was chosen to be.=2.50, and the potential was left 0t
unshifted. No corrections were applied to account for the

ULJ(r):4€

U(r)/e

— — 6-12 potential
effects of the truncation. !
The simulations were performed within the grand canoni- ) . . s .
cal ensembl§19,20, permitting fluctuations in the total par- 0.5 1 1.5 2 2.5 3
ticle numberN. Two distinct geometries were studied: r/c

(a) A fully periodic cubic system of volum&'=L9.

(b) A slit-pore geometry in which the fluid is confined to
a cuboidal simulation cell of dimensions XL, XL (with
Ly=Ly) having structureless hard walls in the plarzesO
and z=L, and periodic boundary conditions at the cell
boundaries in the andy directions parallel to the walls. oincide. In this representation, one sees that the 3—9 poten-

Consider the behavior of the configuration averaged locafy| is hoth longer ranged and exhibits a broader minimum
number density(r) in these systems. In geometwy, trans- o the 4-10 potential—a fact which will aid the interpre-
lational invariance ensures tha(r) is independent of the  (a4ion of the simulation results presented below.
position vectorr(x,y,z), and one has simplg(r)=p, i.e.,
the configuration averaged number density. In the absence of
finite-size effects,p is completely determined by the im-
posed values of the chemical potenjiahnd the temperature As far as practicable, our simulation strategy has been to
T. By contrast, in geometrgb) the presence of the walls at try to mimic the experimental adsorption studies of Ré&f,
z=0 and z=L break the translational symmetry in tze in whichI'(7) was measured along the bulk critical isochore
direction, giving rise to a one-dimensional densjisofile  as T, was approached from above. A prerequisite in this
p(r=p(2) representing the configuration averaged localregard is an accurate knowledge of the locus of the bulk
number density at a given The precise form of this profile critical isochore. Within our grand canonical simulation

FIG. 3. Comparison of the potentials of E¢4.1) and(4.2) for
the case é=f=1. The inset shows the result of scaling the well
depth of the 4-10 potential to equal that of the 3—9 potential, and
translating along the abscissa until the minima coincide.

B. Determining the critical isochore

, (4.29

Us_g(2)=4ef3 o

depends not only op and T, but also on the details of the framework, this is specified by the functiqu(p.,T). For
fluid-wall interaction. In this work, we assume that fluid par- the LJ fluid (with r.=2.50), p. is known accurately from a
ticles interact with a single wall via a long ranged potentialprevious finite-size scaling=S§ study, as are estimates for
having one of either two forms: ue andT, [22]. Hitherto, however, no accurate estimates for
10 . the critical isochore it;elf have been reported. Accordingly a
U 2) = def 2(0)7 [ao new set of simulations were performed to determine
a-1d €la-105| 7 z u(pe,T) for a range of supercritical temperatures. These
simulations were carried out using simulation geoméay
2 (0\® [o)|® described above.
1_5(;) _(;) ' (4.2b The procedure adopted for estimatin@p.,T) is detailed
below and involves determining, for a given temperaflire
wheref is a parameter that tunes the strength of the fluid-walthat value of the chemical potential for which the measured
interactions relative to those of the fluid interparticle interac-density matches the known critical point value. Unfortu-
tions. The total wall-fluid potential is then given by E§.2).  nately this task is complicated by finite-size effects. Well
We note thatU,_;4{z) models a wall which is assumed to away from the critical point the correlation lenggtis small,
comprise a single plane of LJ particles, wHilg_g models a  and provided the linear dimension of the periodic simulation
wall that fills the half spac¢21]. Since both of these wall box L>¢, the finite-size functionu, (p.,T) will provide a
potentials decay considerably less rapidly with increasingeliable estimate for the bulk isochordp.,T). As the criti-
separation than the LJ interparticle potential of Eq1), no  cal point is approached, however, the correlation length
potential truncation was applied. grows until it is comparable to, or greater than, the system
It is instructive to compare the forms of the two types ofsize L. In this regime, one expects that estimates of
fluid-wall potentials[Eq. (4.2)] with one another, and with u, (p.,T) will deviate systematically from the limiting bulk
the Lennard-Jone&—12 interparticle potentialEq. (4.2)]. form.
This comparison is made in Fig. 3 for the case=4f=1. In principle, FSS methods can be employed to obtain es-
The relative range of the two wall potentials is exposed bytimates for bulk quantities from simulations of finite size
the inset which shows the result of first scaling the well[23]. Unfortunately their applicationearthe critical point is
depth of the 4—10 potential to equal that of the 3—9 potentialrather less straightforward tha the critical point. The dif-
and then translating along the abscissa until both minimdiculties stem from crossover effects associated with nhonzero



PRE 60 EFFECTS OF CONFINEMENT ON CRITICA. .. 7113

values of the two relevant scaling fiel{$0], uy andu,, -23 . . . . .
which control deviations of the number density and energy T
density from their critical point values—see E@28.1) and og | oot &

(2.2). Small but finite values of these fields result in a large
but finite correlation lengthé, which, owing to computa-
tional restrictions on the range of accessible system sizes,
renders the limiL> ¢ (in practical termpunattainable. One

O
? ®
or g % ™
[==)
=2.5 T —omo1 | % b

-0.0002 L L L L

Chemical potential

is therefore forced to attempt to extrapolate to the thermody- 26 1312 125 13 135 14 F L=17.56 -
namic limit using data from system sizes for whikckes &.
However, such an extrapolation is fraught with complica- 27

tions since it requires prior knowledge of the universal scal-
ing functions(and associated non-universal amplitydemn-
trolling the crossover to the thermodynamic limit as bjat -2.8
and|uy| are increased. To our knowledge, accurate forms for

these scaling functions are not available.

In view of these difficulties, we have not attempted a full £, 4. The measured isochorg (p.,T) for the two periodic
FSS analysis of the critical isochore. Instead we have simplgystem sizes = 17.5r andL=100. The inset displays the differ-
determinedu (p.,T) for the largest accessible system size,ence between the two estimatgsis the absolute chemical poten-
and used this as our estimate for the bulk functidp.,T). tial (in units of kgT) subject to the convention of choosing the
Notwithstanding the lack of a FSS analysis, there are formathermal wavelengtih =1 in the general definitiotisee Ref[19]).
grounds for believing that for the special case of the criticalResults are given in terms of LJ reduced units.
isochore, finite-size effects are smaller than on any other . o e
near-critical isochore. To see this one must consider the ef- To determine the finite-size crrqcal isochore, the fOHC.)W'.
fect on observables of finite values of the scaling fieid|. Ing procedure was employed. Taking a large, cubic, periodic

o . : imulation cell of linear siz& = 17.5, runs were performed
Ssec\llslﬁ;lrl]y,i;v Zi:‘/(;c;]usb;/r;/ltie( I? idfznsr)lg ?ep;gg:]t?r? S Jggﬁi th the bulk critical point, for whicth22], in reduced LJ units,

. . A T.=1.1876(3) andu./kgT,=—2.77§2),p.=0.31974).
gﬁllrégjzlg]r linear combination of the number and entropy denAt this density, the system contains, on averdye: 1715

The dependence oAM= M— M, on |uy| differs be- particles. Histogram reweightin@6] was then employed to
Cc

tween the thermodynamic and FSS limits. For the formefSimate forT =1.00287, the u value for whichp=p.. A
1/8 second simulation was then performed at this new state

case one hagM~uy”", while, for the latter cases M, point, followed by a further extrapolation of the results to

~uyL””. It follows that for the special case,=0, esti- . S
X X obtain ,T) for the still higher temperature off
mates ofoM, will agree with the bulk value opM for all = 1.015IFLCL.(p1Ehis) procedure was t?]en iteratgd a total of six

L, i.e., exhibit no finite-size dependence. For nonZexq, imes vina isochoric  data  at  temperatured
however, there will be a finite-size erréM, — M. Spe- -7 ,10328' gl 015 1.053. 1087 andp 1127

e . . . — Iecyds crt- [o R R ci1+- [oX] . c-
cifically, for agiven L one expects that gsy| is increased Combining all six sets of simulation data via the multiple

— initi i i 1/
frlom zer_?ﬁ oM, 5/\3 |n||t|ally |E_creases I'kelqu ,t but histogram reweighting schenj&6], it was then possible to
Slows Witlh IncreasingUy|, reaching a maximum, at some map the entire isochore in the ran@g<T<1.123T.. Fig-

1 —Bdlv P
|duH| L . .tr;r hereaftc_etr,dfurt:\‘f/(\a/rl "lcgiise i?IH| flead<<tcl)_ 4 ure 4 shows the results, together with the estimate of the
ecrease in the magnitude L untl, for <L, critical isochore for a smaller system of linear site

measurements ofM, again agree withoAM. Thus aguy| =100, determined using an identical procedure. The differ-

is increased from zero, the magnitude of the finite-size eITOL o5 between these two estimatesug{p.,T) (inset of
c»

oM, —5M associated with a given choice &f first in- ig. 4) are less than one part in 40confirming the expec-
creases from zero, reaches a maximum, and then falls back fg | "o o+ finite _cize effects are small

Zero.
As far as the number density itself is concerned, one finds
[22] that on the lineuy=0, p converges rapidly to its lim-
iting value with increasing_ like p,—p~L~ "9 For Simulations of the LJ fluid confined to a mesoscopic slit
nonzero|uy|, the dominant source of finite-size error is that pore (cf. Sec. IV A) have been carried out for state points
described above. Thus, for a giventhe finite-size error in  along the critical isochore of Fig. 4. Most of our studies are
the measured number density is minimized for state pointéor a system of dimensions,=L,= 150 andL =200, al-
on the lineuy, =0, representing the analytical continuation of though some results have also been obtained for a system of
the coexistence curve f©6>T,.. Given that the critical iso- sizesL,=650 andL =200 in order to gauge the magnitude
chore and the lineiy=0 meet at the critical point and sepa- of finite-size effects associated with the wall arkaL2.
rate from one another only weakly &sncreases fronT, (&  We note that in the experiments of Rg2] for SF; in con-
feature that we have confirmed numericaligne can expect trolled pore glas§CPQ glass, the pore diameter is about 31
that the scaling fieldi, is generally very small on the critical nm, corresponding to about 100 molecular diameters.
isochore(see also Sec. )lland hence that the system size  Simulation runs comprised ¥0Monte Carlo sweeps for
dependence ofs (p.,L) is less than it would be on any equilibration followed by 5 10° sweeps for data collection.
subcritical or supercritical isochore within the critical region. Measurements of the density profile were accumulated every

1.1 1.15 12 1.25 1.3 1.35 14
Temperature

C. Studies of the slit-pore geometry on the critical isochore
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1 ‘ - - For strongly attractive wall potentiald{ ¢=0.41f, 1
e : =0.77), the density at the wall greatly exceeds the critical
08 | - =059 ] density, and the profile isonvex downwardwith respect to

the critical density. Thus the local densjtyz) everywhere
exceedsp. and decreases with increasing distance from the
wall. At no point does it fall top.. This latter feature is in
stark contrast to the simulation results of Schoen and co-
workers[4,5], who investigated a very similar model to that
described here. For certain fluid-wall interaction strengths,
they reported a density profile that greatly excepgsear

the walls, but dipsbelow p. in the slit middle. Recently,
however, this depletion feature was demonstrated to be an
artifact [27], arising jointly from systematic errors in the
simulation procedure used, and an incorrect designation of
the critical point parametef28].

For weakly attractive fluid-wall interactions f{ g
<0.24f, 10=0.53) the density at the wall is less than the
critical density and the profile isonvex upwardswith re-
spect to the critical density. Thus the local dengifg) is
everywhere less thagm, and increases with the distance from
the wall. At no point does it attain the critical density. Tests
performed at subcritical temperatures indicate thatf feeil-
ues in this regime, the walls “prefer” the gas phase at coex-
istence. This is in contrast to the systems studied experimen-
tally in Refs.[1,2], where the liquid wets the walls foF
<T. and which, presumably therefore, correspdimd the
, ‘ ‘ language of the present modéb the largef regime.

0 5 10 15 20 Turning now to intermediate wall strengths, the observed
(b) 7 =7/ behavior is somewhat subtle. Close to the wall, the packing-
induced density oscillations span the critical density. Further

FIG. 5. (8) The measured density profilegz) (in units of ®)  away from the wall, the magnitude of the profile curvature is
for the 4—10 potential at the estima_ted _values of the bulk Critica‘generally less than in the large or snfdlmits. Interestingly,
parameterqu; and Te. The system size i6,=150,L=200. Re- o0 axisf values in this regime for which(z) exceeds, ,
?&'tggsqreaagg)r%ﬁrf;ft‘r’:’:g Sgen(i;”nsz;f Idr:sgcl;?%’ ec%g;sthh.e (i'gzi]zon but the profile iconcave upwardwith respect to the critical
tal dotted line denotes the thepcritical c;lensrity dgnsity. Thus(z) exceedsp, andincreaseSN!th increa_sing

’ distance from the wall. We shall return to discuss this unex-

pected finding in Sec. V.

100 sweeps with each sweep involving,(r.)* attempted Although both types of wall potential exhibit the same
particle transfers andL( /r.)* particle translations. Results qualitative behavior in the three regimes bfdescribed
have been obtained for both of the wall potentials given ingpove, differences are present in the detail. This is particu-
Eg. (4.2, and for a range of values of the wall potential |arly true for small values of as evidenced, for example, by
strengthf. a comparison of the profiles fof;_g=0.18 and f,_j,
=0.53. For these profiles the local densities in the slit middle
are almost equal, but the wall density for the 4—10 potential

Density profilesp(z) at the bulk critical parameterg, is considerably greater than that for the 3—9 potential. This
andT, are shown in Fig. &) for the 4—10 potential and Fig. difference reflects the relative range of the two potentiass
5(b) for the 3—9 potential. In both cases the bulk critical discussed in Sec. IV Aand in particular, the fact that to
densityp.0>=0.3197 is denoted by a horizontal dotted line. obtain a given magnitude of wall potential at the slit middle

It is instructive to compare and contrast the density pro{z=10), one require$,_;;=10f3_o.
files for both forms of wall potential. In all instances there is ~ We round off this subsection with some remarks concern-
oscillatory structure close to the walls arising from excludeding finite-size effects associated with the finite wall afea
volume “packing” effects. The number density at the wall =L§. In a simulation, the infinite slit-pore limit, /L — oo
(as measured, e.g., by the height of the first pésilprinci-  cannot be realized for allL values of interest because of
pally controlled by the strength of the wall potential, i.e., by bounds on the computationally accessible system sizes. Well
the value off. Larger values of this parameter lead to a largeraway from criticality, this should elicit no grave concern
wall density and greater amplitude of oscillationsg(z). because periodic boundary conditions in directions parallel
Further away from the walls, the packing effects graduallyto the walls provide a good approximation to the thermody-
die out andp(z) varies smoothly witle. Within this smooth  namic limit. A critical system, on the other hand is always
region, three main regimes of behavi@ommon to both ‘“aware” of its boundary conditions, by virtue of its infinite
wall potentials can be identified afis varied. We address correlation length. Changes In, will therefore alter the ef-
these in turn. fective range of correlations parallel to the walls, which

p(z)

p(z)

1. Critical point
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FIG. 6. As in Fig. %a), but for a system having,= 650 and FIG. 7. The measured density profile&z) (in units of o%) for
L=200. the 4-10 potential withf,_,;=0.89 at a selection of temperatures

along the critical isochore of Fig. 4. The critical density is de-

might be expected to couple to those perpendicular to th80ted by a horizontal dotted line.

walls in such as way as to affect the density prafi(e). To

investigate this possibility, we have performed simulations inNeither do we observe a pure power law scaling for the
which we increased., from the valueL,= 150 considered variation that is present. This is because there exists no sub-
hitherto, toL,=650. Owing to the high computational cost stantial region ofz (away from the packing effects near the
associated with such a large simulation cell, it was feasible tgvalls) which is not simultaneously influenced by the poten-
perform this comparison for only one type of wall potential, tials of both walls.

and we have chosen the 4-10 form. The results are shown in As the temperature is increased, there is a concomitant
Fig. 6. Comparison with those of Fig(d reveal that the  gecrease in the bulk correlation length 7~ which at some
increase inL, engenders only small changes in the form of hoint pecomes less than the slit width For distances from

the density profiles, the effe¢such as there jsbeing great- o \vall that exceed, the decay op(z) — p, is expected to

est for intermediate wall strengths. On this basis it seems, << ver to an exponential form ex£). We indeed ob-
unlikely that the general scenario set out above would differ, '

in the infinite slit limit. Nevertheless we feel that the role of ser;/e a rapid r?fxatlﬁn qu(z) {0 pc for .h'g.lh tempehratureds
wall area on confined critical systems is an issue that cer(—Tfl'Ong)’ although, for reasons simi ar tq t.ose e
tainly merits a more systematic future investigation. ts;nbed above, we have not been able to identify its charac-

In order to quantify the temperature dependencg(a),
and to make contact with the experimental studies of Refs.

In this subsection we present results for the temperaturfl,2] and the theoretical results of Sec. lll, we have obtained
dependence of the density profile on the critical isochorethe temperature dependence of the adsorptign, defined
Both the 3—-9 and 4-10 wall potentials have been studied iby Eq. (3.15 The form of I';(7) is shown in Fig. 8 for a
this regard. However, since it transpires that the qualitativeepresentative selection éfvalues. The observed behavior
form of the results are similar in both cases, we describe onlyalls naturally into three regimes dfvalues, namely, large,
those results pertaining to the 4—10 potential. intermediate, and small.

Figure 7 shows the forms gf(z) at a selection of tem- For largef (f4,_1=0.77), Fig. 8 shows that the adsorption
peratures along the critical isochore of Fig. 4, for the caséncreases monotonically asis reduced to zero from above.
f4_1~=0.89. Thisf value represents a strongly attractive wall Values off in this range are believed to correspond to the
potential, as evidenced by the high wall density. From thesituation studied experimentally in Refdl,2]. As was the
figure, one observes that at the critical point the local densitgase for density functional theory results of Sec. Ill, we find
p(2) is large compared tp. across the whole width of the no evidence for the experimentally observed depletion phe-
slit. As the temperature is raised, however, the density in th@eomenon in whicH () first rises to a peak asdecreases,
slit middle decreases until, fof=1.09T., it reaches the and thereafter falls rapidly to negative values as the critical
bulk valuep. point is approached.

The explanation for this behavior is straightforward. In  We have attempted to analyze the formlgf 7) for large
the vicinity of the critical point, the correlation length ex- f at temperature well above criticality. Assuming there exists
ceeds the slit width. and the density enhancement at thea regime for whichL> &> o (with o the particle diameter
walls propagates across the whole slit, raisirfg) with re-  one expects thdt .(7) will exhibit the universal scaling be-
spect top. . In this regime one expects that for a sufficiently havior of critical adsorption at a single wall, i.e’:(7)
large slit width L, the density would decay to its critical ~ 7", It is not clear,a priori, that our rather narrow slit
value likez #'*, as is the case for critical adsorption at a pore provides access to this regime. Nevertheless, Fig. 8
single wall. Unfortunately our slit pore is much too narrow demonstrates that a fairly good fit to this form can be
for p(z) to reach the bulk value in the available rangezof achieved in the high temperature regime.

2. Supercritical temperatures
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Turning finally to smalif values, we find that the adsorp-
tion is negative at the critical point, reflecting the fact.
Fig. 5 that p(z)<p. for all z As 7 increases, however,
I'.(7) is observed to increase monotonically with increasing
7, although it at no point becomes positive. This increase in
I'. is traceable to a progressive relaxati@way from the
walls) of p(z) toward the bulk valug.. As in the case of
large f discussed above, this effect has its origin in the de-
crease of the correlation length.

D. A subcritical isochore

In the experiments of Reffl,2], the adsorption was stud-
ied on subcritical isochores having 0.89p/p.<0.999. Un-

fortunately, in a simulation, it is not practicable to employ
these same isochores because of the wholesale smearing out
of the critical region by finite-size effects. Specifically,

in the FSS regime, one find§25] that L?"(p—pc)

= F(uyL9 #'"), whereF is some scaling function. In prac-
tical terms, this means that applying a given nonzero bulk
field to the fluid engenders a much smaller density change
for a finite-size system than in the bulk limit. As a corollary,
one finds that the typical scale of density fluctuations in a
critical finite-sized system can be large. Thus for instance,

. . . . for a cubic simulation cell of sizé.=17.5%, the critical
As f is reduced toward the intermediate reginig(r) point density fluctuations extend from~0.15 to p~0.5.

becomes progressively flatter until, 165 ;~0.65, the ad-  cjearly therefore a fractional reduction in the density of
sorption appears to exhibit little or no temperature depeng 5o, would have little discernible effect, either on bulk
dence. This “neutral wall” scenario presumably arises from¢ipite-size or adsorption phenomena.

a (neay cancellation of two competing factors associated |, view of this, we have chosen to study(7) on the

with the wall potential. On the one hand there is the “miss-igqchore having = 0.220~3=0.68.. Although this density

ing neighbors” effec{represented by the paramet&n EqQ.  ig considerably smaller thap,, it nevertheless lies within
(3.4)], whereby particles close to the wall have their potentiahe range of critical point density fluctuations in our finite-
energy raised relative to those in the bulk. On the other hand;;eq systems. One can therefore anticipate that if there is a

there is the reduction in potential energy of particles arising;iical depletion effect associated with negative values of
from the attractive part of the wall potentigdf. the param- o ik field, then it should be visible on this isochore.

etere,, in Eq. (3.4)]. The cancellation of these two contribu- The locus of thepa®=0.22 isochore was determined in
tions effectively neutralises the influence of the wall on thethe temperature rangg,<T<1.123T, using the same pro-
fluid, and with it the temperature dependencd’ef Thisis  ceqyres as outlined in Sec. IV B. However, an additional
also clearly visible in the corresponding density profile§.  ompiication in the present case was a greatly increased
9). finite-size dependence @f (p,T). Comparison ofu, (p,T)

for L=100 andL=17.5 revealed finite-size effects an or-

FIG. 8. The measured adsorptibp= [§(p(z) — pc)dz (in units
of o?) for the 4—10 potential on the critical isochore, plotted as a
function of the reduced temperature: (T—T.)/T.. The slit width
is L=200. Data are shown for a selectionfofalues, deriving from
multi-histogram reweightin§26] of simulation data collected at six
temperatures in the range.<T<1.123T.. For the two largest
values we also show fits to the data in the largeegime, of the
form I'(r)=a+br#" with B—vr=—0.305. Statistical errors do
not exceed the symbol sizes.

0.6 der of magnitude larger than those on the critical isochore
(cf. the inset of Fig. & This feature was discussed in Sec.
05 IV B and is traceable to the differing magnitudes of the bulk
T field uy on each isochore. To ameliorate the problem, we
04 ’ determinedu(p,T) using a very large cubic system of linear
—~ A /\ size L=400. Comparison of the results froln= 400 with
N 03 v N U 1 those from a system of size=17.5% showed a discrepancy
< of less than two parts in 0
0.2 The form of I'¢(7) for the 4—10 potential on thpo
=0.22 isochore is presented in Fig. 10. Data are shown for
0.1 the same selection dfvalues given in Fig. 8. Comparing
these two figures, it is clear that the application of the nega-
0 : . . tive bulk field reduces the adsorption to a considerably
0 3 Z*_lg/c 15 20 greater degree at largethan at smallr. We attribute this to

the large correlation length for smai] allowing the effect of

the wall densitywhich is effectively pinned by the choice of

f) to propagate across the slit, despite the action of the nega-
tive bulk field. The net effect is to increase the range of
variation ofI';(7) for largef values but to reduce it for small

FIG. 9. The measured density profileéz) ( in units of ) for
the 4-10 potential wittf,_,;=0.65 at a selection of temperatures
along the critical isochore of Fig. 4. The bulk densityis denoted
by a horizontal dotted line.
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0.10 , , ' would be dry forT<T,, i.e., the walls prefer gas to liquid.
it At supercritical temperatures the density near the wall is
0.05 |, L f0ee . lower thanp. and the profile increases toward the center of
. 5 2077 the slit. The closer one is 6., the slower the increase and
0.00 = . ° =089 ] the more negativé’; is. A similar behavior ofl'; is found
e o for very weakly attractive wallgsmall €,,) in our DFT cal-
[y e %o, culations, and was noted earlier by Marcpbb]. By select-
00 e, e 1 ing an intermediate value dfit is possible to construct a
. ”i*joonzzzzzzgDn:::::::::moomomm nearly neutral wall for whicl"(7) is small in magnitude and
R sttt e T almost independent af. In this case the density profiles are
remarkably insensitive ta until very close toT., where
-0.15 : : ' p(2) has the striking form shown in Fig. 9, i.e., it becomes
0 0.04 0.08 0.12 0.16 concave upwards with respect pg. More careful analysis
T=(T-TIIT, reveals that for slightly greater valuesfdahe profiles exhibit

FIG. 10. The measured dependence of the adsorptidn, tV_VO symmetric ”.“"‘X‘ma near the wallbut outside the re-
= I5(p(2) = po)dz (in units of o?) for the 4—10 wall potential on glons.ofl the oscillatory sf[ructu}.éor temperatures close to
the pa3=0.22 isochore. Statistical errors do not exceed the symbol ¢+ Similar, nonmonotonic profiles were found recently for
sizes. two-dimensional critical Ising films in the crossover regime
between ordinary and normal transitions, i.e., for weak sur-
f values. The same qualitative behavior is observed for théace f|elds[29]. Currently we are investigating whether _the
3-9 wall potential. However, in no instance do we see anyonmonotonic form of the profiles found in the present simu-

sign of a rapid critical depletion of the pore density as lations of a Lennard-Jones fluid arises from the same physi-
0. cal mechanism as in the Ising case.
We were motivated to investigate subcritical isochores
V. DISCUSSION becausdi) the sorption experiments on porous glasses were
performed for =(p—p.)/p.=—0.001 and-0.005, andii)

The density functional theoryDFT) results and those of the lattice gas studies of Ref&,7] suggested that depletion
simulation have confirmed the heuristic arguments of Sec. Ikhould occur on a path at fixed bulk fieldu=2H<0. Our
that there should be no critical depletion for a fluid in apresent results for fluids show that no depletion occurs for
single slit pore. In particular, for a fluid on its critical isoch- the wide range of subcritical isochores and pore widths
ore, p=p., and for strongly attractive walls the adsorption which we have investigated. The DFT results of Fig. 2 imply
I'; increases monotonically dsis reduced toward@.. There  that for the values of pertaining to the experiments the
is no evidence of the rapid decreasel@fnearT, which is  behavior ofI',(7), is changed very little from that on the
the experimentally observed signature of critical depletioncritical isochorer =0. Increasing|r| does alterl’(7), but
Although the simulation resultéFig. 8) do not display the this quantity remains monotonically increasing &s>T..
saturation ofl’; that is clear in DFT results of Fig. 2, we This is in keeping with the simulation resultwith large f)
believe this reflects the different valuesloénd the different  of Fig. 10, although it should be noted that the simulations
temperature ranges used in the two treatments. In the DFflefer tor = —0.31 and to a much smaller value lofthan in
calculations, wheré is very large, saturation does not set in the DFT calculations or in the experiments. In summary, our
until 7~10"°, andI', is still decreasing quite rapidly with  explicit calculations appear to confirm the expectations of
for =103, In the simulations, however, whete=200 we  Sec. Il that, for strongly attractive walls and parameter val-
would not expect saturation unti~7,~3x10 3, and this  ues of practical interest, the effective bulk field in the fluid is
is difficult to discern on the scale of Fig. 8. Such a mono-insufficient to drivel', negative beforé~L, i.e., we are in
tonic behavior ofl’ is consistent with the lattice gas results the regimer, <7, where depletion does not occur. Alterna-
for bulk field H=0 [6]. It differs from the Monte Carlo tively one can say that for the relevant valuesr pfhe ex-
results of Schoen and co-workel4,5], but, as mentioned perimental pore widthk are not large enough for the density
earlier, those simulations suffered from systematic errorgrofile to relax from its high value near the walls to its bulk
[27,28. The physical picture which emerges from both oursubcritical value in the center. Note that one cannot njake
present treatments is one in which the density profiles showoo large without leaving the experimental critical region.
increasing enhancement, with respectptg in the central The circumstances of the fluid are different from those of the
portion of the slit as the correlation lengtéhincreases and lattice gas, where for “reasonable” choices of fixed bulk
the decay at each wall becomes slower. Whenrg, i.e., field H one had6] r,< 7y, the parameter equivalent tQ.
&é~L, there is maximum enhancement and maximum ad- We conclude that the adsorption calculated along critical
sorption. Increasing the strength of the wall-fluid potentialand subcritical isochores for a single slit pore does not ex-
(the parametef) simply raises the overall level of the pro- hibit the depletion observed in the experiments. What then
files and leads to an increaselip at a given value of—see  can be the explanation for the experimental data? One might
Fig. 8. speculate that for some reason the density of the reference

For weakly attractive wallgsmall values off) the simu-  cell, which fixes the experimental isochore, was not constant,
lation results yield negative values of the adsorption on théut it is still difficult to see why this might mimic the fixed
critical isochore, withl';(7) monotonically increasing with scenario. What is more likely is that the observed depletion
increasingr. In this regime off the wall-liquid interface arises from the fact that the porous adsorbent is a complex
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solid material consisting of interconnected pores of variouglso be expressed in terms of the elliptic integral of the first
shapes and sizes whose morphology is poorly understoo#tind. ForT>T., a>0, one can also show

Modeling such a material in terms of ide@onconnected D% | 12
slit pores is, of course, a gross oversimplification. Recent o —13 12
theoretical and simulation studi¢30] show that the phase L=2pc b* (o)™ F (4]m), (A3)

behavior of fluids confined in such disordered mecha be

very different from that which occurs in a single pore, but wewhere the arguments &(¢|m) are given by
are not aware of investigations of the adsorption along near- 12
critical isochores. It should be possible to employ the model tam/zz(w)
porous glasses produced in the quench simulations of Gelb P(ry—ra)

and Gubbing31], which mimic the spinodal decomposition

process used to make real CPG glasses, in such an inves@®

gation. Were the adsorption to be vastly different from that (p+q)2+(rpy—r4)2
found for the “average” single pore this would be a striking m=(1/4) )
demonstration of the importance of pore disorder and con- Pq

nectivity f(_)r critical phenome_zna_\. Note th_at further ew_olencerl is the single real root of the cubic equation
that the single pore model is inappropriate to describe the

experiments comes from the observation that critical deple- r34r2r 4 (rd+2a* b*) +r3 +(2a* Ib* ),
tion occurs for the colloidal graphite substrate Vulcahf8r
plp.=1.01 and 1.04 i.e., for supercritical isochords?2]. —(4b*)Au* =0, (A4)
Attempts to explain this observation within the single pore
model require many further assumptidies. and p?=(u—ry)%+n? g*=(u-ry)?+n? where u=
—(1/2)(ry+ 1) andn?=r2—u?—2ur,+2a*/b*.
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APPENDIX wherey=rZ((3a*/b*)+rp) and
For the Landau model the integréa&8) and(3.13 can be —6(a*/b*) 172
performed explicitly in the special case afu=0 (on the 2= —2+3r,;4 , (AB)
critical isochorep,=p.) (see Ref[15)): Yim
x| 12 ) 1 1 ) 1 1
L=2p; ¥ —| (rn+a*/b*) ¥ (glm), (AD) Cosp=\N"= S+ 5| [\ MT a5 (A7)
b* rm r.W rm l’W
where r = (p(L/2)— p.)/p. is the reduced density at the 2 1/ (34 Fm’—a*/(b*y) A8
midpoint of the slit, and* =(Dp%?/ksT.. F(&|m) is the SI a=1/2=(3/4) =——=5—— (A8)
incomplete Jacobi elliptic integral of the first kif@4] with
arguments cog=r/r,,, wherer,,=(p(0)—p.)/pcisthere- and
duced density at the wall, anch=(r2+2a*/b*)/(2r2 12
+2a*/b*). On the critical isochorg,=p. the adsorption (3D 1 -
can also be evaluatdd5]: T'e= b* Pey F(¢ra)=perol, (A9)
23l 2D* 1z where
Fe=p¢ b*
N2=(3(a*/b*)+3r)*?, (A10)
* 23.* 1/2
r2+ —+|rh—ri+ - (r2—r2 cosp=(N2>—r2+r2)/(N2+r2—r2), (A11)
XIn " 3
2y L Si? a=1/2— = (r2/)\?). (A12)
b* 4
—porpl. (A2) Equivalent forms were derived in R¢lL5], where they were

used to study the behavior of the adsorption in the crossover
ForAu<0, i.e., forp,<p., relation(3.8) between the order regime from the noncritical to the scaling region as a func-
parameter at the midpoimt, and the wall separatioh can  tion of wall separation and surface fields.
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